5 research outputs found

    Peroxisomal defects in microglial cells induce a disease-associated microglial signature

    Get PDF
    Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal ÎČ-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders

    Light-inducible T cell engagers trigger, tune and shape the activation of primary T cells

    No full text
    Cells perceive overtime complex sequences of receptor stimulation that they integrate to mount an appropriate response. Yet, the influence of signal dynamics on cell responses has been poorly characterized due to technical limitations. Here, we present a generalizable approach to control receptor stimulation on unmodified primary cells. Indeed, for applications on primary murine T cells, we have engineered the LiTe system, a new recombinant optogenetics-based Light-inducible T cell engager which allows tunable and reversible spatiotemporal control of the T Cell Receptor (TCR) stimulation. We also provided in vitro evidence that this system enables efficient T cell activation with light, leading to cytokine secretion or tumor cell killing. Using specific time-gated stimulations, we have been able to orient the outcome of the activation of T cells. Overall, the LiTe system constitutes a versatile ON/OFF molecular switch allowing to decipher the cellular response to stimulation dynamics. Its original control over T cell activation opens new avenues for future precision cancer immunotherapy

    Light-inducible T cell engagers trigger, tune and shape the activation of primary T cells

    No full text
    International audienceCells perceive overtime complex sequences of receptor stimulation that they integrate to mount an appropriate response. Yet, the influence of signal dynamics on cell responses has been poorly characterized due to technical limitations. Here, we present a generalizable approach to control receptor stimulation on unmodified primary cells. Indeed, for applications on primary murine T cells, we have engineered the LiTe system, a new recombinant optogenetics-based Light-inducible T cell engager which allows tunable and reversible spatiotemporal control of the T Cell Receptor (TCR) stimulation. We also provided in vitro evidence that this system enables efficient T cell activation with light, leading to cytokine secretion or tumor cell killing. Using specific time-gated stimulations, we have been able to orient the outcome of the activation of T cells. Overall, the LiTe system constitutes a versatile ON/OFF molecular switch allowing to decipher the cellular response to stimulation dynamics. Its original control over T cell activation opens new avenues for future precision cancer immunotherapy

    Novel Hepatitis B Virus Capsid Assembly Modulator Induces Potent Antiviral Responses In Vitro and in Humanized Mice

    No full text
    International audienceHepatitis B virus (HBV) affects an estimated 250 million chronic carriers worldwide. Though several vaccines exist, they are ineffective for those already infected. HBV persists due to the formation of covalently closed circular DNA (cccDNA)-the viral minichromosome-in the nucleus of hepatocytes. Current nucleoside analogs and interferon therapies rarely clear cccDNA, requiring lifelong treatment. Our group identified GLP-26, a novel glyoxamide derivative that alters HBV nucleocapsid assembly and prevents viral DNA replication. GLP-26 exhibited single-digit nanomolar anti-HBV activity, inhibition of HBV e antigen (HBeAg) secretion, and reduced cccDNA amplification, in addition to showing a promising preclinical profile. Strikingly, long term combination treatment with entecavir in a humanized mouse model induced a decrease in viral loads and viral antigens that was sustained for up to 12 weeks after treatment cessation

    Accelerated thymopoiesis and improved T‐cell responses in HLA‐A2/‐DR2 transgenic BRGS‐based human immune system mice

    No full text
    International audienceHuman immune system (HIS) mouse models provide a robust in vivo platform to study human immunity. Nevertheless, the signals that guide human lymphocyte differentiation in HIS mice remain poorly understood. Here, we have developed a novel Balb/c Rag2-/- Il2rg-/- SirpaNOD (BRGS) HIS mouse model expressing human HLA-A2 and -DR2 transgenes (BRGSA2DR2). When comparing BRGS and BRGSA2DR2 HIS mice engrafted with human CD34+ stem cells, a more rapid emergence of T cells in the circulation of hosts bearing human HLA was shown, which may reflect a more efficient human T-cell development in the mouse thymus. Development of CD4+ and CD8+ T cells was accelerated in BRGSA2DR2 HIS mice and generated more balanced B and T-cell compartments in peripheral lymphoid organs. Both B- and T-cell function appeared enhanced in the presence of human HLA transgenes with higher levels of class switched Ig, increased percentages of polyfunctional T cells and clear evidence for antigen-specific T-cell responses following immunization. Taken together, the presence of human HLA class I and II molecules can improve multiple aspects of human B- and T-cell homeostasis and function in the BRGS-based HIS mouse model
    corecore