1,189 research outputs found

    Modal Analysis of a Two-Parachute System

    Get PDF
    The Orion capsule is designed to land under a nominal configuration of three main parachutes; however, the system is required to be fault tolerant and land successfully if one of the main parachutes fails to open. The Capsule Parachute Assembly System (CPAS) Team performed a series of drop tests in order to characterize the performance of the system with two main parachutes. During the series of drop tests, several distinct dynamical modes were observed. The most consequential of these is the pendulum mode. Three other modes are benign: flyout (scissors), maypole, and breathing. The actual multi-body system is nonlinear, flexible, and possesses significant cross-coupling. Rather than perform analysis of this highly complex system directly, we conduct analysis of each dynamical mode observed during flight, based on first principles. This approach is analogous to traditional aircraft flight dynamics analysis in which the full nonlinear behavior of the airframe is decomposed into longitudinal dynamics (phugoid and short-period modes) and lateral dynamics (spiral, roll-subsidence, and dutch-roll modes). This analysis is intended to supplement multi-body nonlinear simulations in order to provide further insight into the system

    Linear Analysis of a Two-Parachute System Undergoing Pendulum Motion

    Get PDF
    Motion resembling that of a pendulum undergoing large-amplitude oscillation was ob- served during a series of flight tests of an unoccupied Orion Capsule Parachute Assembly System (CPAS) drop-test vehicle. Large excursions away from vertical by the capsule could cause it to strike the ground or ocean at a large angle with respect to vertical, with an undesirable attitude with respect to heading, or with a large horizontal or vertical speed. These conditions are to be avoided because they would endanger the occupants of the capsule in an actual mission. Pendulum motion is intimately related to a parachutes aerodynamic normal force coefficient, which is a nonlinear function of angle of attack. An analytical investigation of the dynamics of pendulum motion is undertaken with the aid of a simplified model of the physical system and the assumption that the normal force coefficient is a linear function of angle of attack in the neighborhood of a value corresponding to stable equilibrium. The analysis leads to a simple relationship for the location of a pivot point, which provides insights that are consistent with previous studies

    Understanding the patellofemoral joint in total knee arthroplasty

    Get PDF
    © 2019 Joule Inc. or its licensors. Total knee arthroplasty (TKA) is one of the most successful procedures in orthopedic surgery. Nevertheless, postoperative patellofemoral complications remain a challenging problem, affecting a substantial proportion of patients. Complications involving the patellofemoral joint (PFJ) can occur in both resurfaced and nonresurfaced patellae. Types of PFJ complications include anterior knee pain, maltracking, fracture, avascular necrosis and patellar clunk. The causes of patellofemoral complications can be categorized into patient-, surgeon- and implant-related factors. Patient characteristics such as female sex, young age, depression and increased body mass index have been linked with increased complications. Important technical considerations to avoid complications include achieving appropriate rotational alignment of the femoral and tibial components, maintaining joint line height, medializing the patellar button and avoiding overstuffing the PFJ. Component design features such as conformity, shape and depth of the femoral trochlea have also been shown to be important. Although the cause of patellofemoral complications after TKA may sometimes be unknown, it remains important to minimize errors that can lead to these complications

    (1) The Relationship of Protein Expression and Cell Division, (2) 3D Imaging of Cells Using Digital Holography, and (3) General Chemistry Enrollment at University of Michigan.

    Full text link
    Chapter 1: We evaluated the relationship between cell division and protein expression when using commercial poly(ethylenimine) (PEI)-based polyplexes. The membrane dye PKH26 was used to assess cell division, and cyan fluorescent protein (CFP) was used to monitor protein expression. When analyzed at the whole population level, a greater number of cells divided than expressed protein, regardless of the level of protein expression observed, giving apparent consistency with the hypothesis that protein expression requires cells to pass through mitosis in order for the transgene to overcome the nuclear membrane. However, when the polyplex-exposed population was evaluated for the amount of division in the protein-expressing subpopulation, it was observed that substantial amounts of expression had occurred in the absence of division. Chapter 2: We monitored cell volume changes in real time during apoptosis using digital holographic microscopy (DHM). The results showed that after exposure to 1 μM staurosporine for four hours, the volumes of KB cells were reduced by ~50-60%, which is consistent with previous results obtained using electronic cell sizing and atomic force microscopy. In comparison with other techniques, DHM is advantageous because it employs noninvasive detection, has high time resolution and real time measurement capability, and can simultaneously probe the time-dependent volume changes of individual cells and cell populations. Chapter 3: We examined the impact of concurrent versus nonconcurrent enrollment on 9,438 students’ withdrawal rates from and final grades in the general chemistry lecture at the University of Michigan at Ann Arbor using multiple linear and binary logistic regression analyses, respectively, at a significance level of 0.05. We found that concurrent enrollment in the lecture and laboratory positively impacts (1) the odds of retention in the lecture by a factor of 2.2 times on average and (2) the final grades in the lecture course by up to 0.19 grade points on a 4.0 scale for the students that scored the lowest on university-level mathematics and chemistry placement exams.PHDChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96160/1/rslahti_1.pd

    Compton Echoes from Gamma-ray Bursts

    Get PDF
    Recent observations of gamma-ray bursts (GRBs) have provided growing evidence for collimated outflows and emission, and strengthened the connection between GRBs and supernovae. If massive stars are the progenitors of GRBs, the hard photon pulse will propagate in the pre-burst, dense environment. Circumstellar material will Compton scatter the prompt GRB radiation and give rise to a reflection echo. We calculate luminosities, spectra, and light curves of such Compton echoes in a variety of emission geometries and ambient gas distributions, and show that the delayed hard X-ray flash from a pulse propagating into a red supergiant wind could be detectable by Swift out to z~0.2. Independently of the gamma-ray spectrum of the prompt burst, reflection echoes will typically show a high-energy cutoff between m_ec^2/2 and m_ec^2 because of Compton downscattering. At fixed burst energy per steradian, the luminosity of the reflected echo is proportional to the beaming solid angle, Omega_b, of the prompt pulse, while the number of bright echoes detectable in the sky above a fixed limiting flux increases as Omega_b^{1/2}, i.e. it is smaller in the case of more collimated jets. The lack of an X-ray echo at one month delay from the explosion poses severe constraints on the possible existence of a lateral GRB jet in SN 1987A. The late r-band afterglow observed in GRB990123 is fainter than the optical echo expected in a dense red supergiant environment from a isotropic prompt optical flash. Significant MeV delayed emission may be produced through the bulk Compton (or Compton drag) effect resulting from the interaction of the decelerating fireball with the scattered X-ray radiation.Comment: LaTeX, 18 pages, 4 figures, revised version accepted for publication in the Ap

    A Study of Mo(4+)Quinoxalyl-Dithiolenes as Models for the Non-Innocent Pyranopterin in the Molybdenum Cofactor

    Get PDF
    A model system for the molybdenum cofactor has been developed that illustrates the noninnocent behavior of an N-heterocycle appended to a dithiolene chelate on molybdenum. The pyranopterin of the molybdenum cofactor is modeled by a quinoxalyldithiolene ligand (S(2)BMOQO) formed from the reaction of molybdenum tetrasulfide and quinoxalylalkyne. The resulting complexes TEA[Tp*MoX(S(2)BMOQO)] [1, X = S; 3, X = O; TEA = tetraethylammonium; Tp* = hydrotris(3,5-dimethylpyrazolyl)borate] undergo a dehydration-driven intramolecular cyclization within quinoxalyldithiolene, forming Tp*MoX(pyrrolo-S(2)BMOQO) (2, X = S; 4, X = O). 4 can be oxidized by one electron to produce the molybdenum(5+) complex 5. In a preliminary report of this work, evidence from X-ray crystallography, electronic absorption and resonance Raman spectroscopies, and density functional theory (DFT) bonding calculations revealed that 4 possesses an unusual asymmetric dithiolene chelate with significant thione-thiolate character. The results described here provide a detailed description of the reaction conditions that lead to the formation of 4. Data from cyclic voltammetry, additional DFT calculations, and several spectroscopic methods (IR, electronic absorption, resonance Raman, and electron paramagnetic resonance) have been used to characterize the properties of members in this suite of five Mo(S(2)BMOQO) complexes and further substantiate the highly electron-withdrawing character of the pyrrolo-S(2)BMOQO ligand in 2, 4, and 5. This study of the unique noninnocent ligand S(2)BMOQO provides examples of the roles that the N-heterocycle pterin can play as an essential part of the molybdenum cofactor. The versatile nature of a dithiolene appended by heterocycles may aid in modulating the redox processes of the molybdenum center during the course of enzyme catalysis

    A Study of Mo(4+)Quinoxalyl-Dithiolenes as Models for the Non-Innocent Pyranopterin in the Molybdenum Cofactor

    Get PDF
    A model system for the molybdenum cofactor has been developed that illustrates the noninnocent behavior of an N-heterocycle appended to a dithiolene chelate on molybdenum. The pyranopterin of the molybdenum cofactor is modeled by a quinoxalyldithiolene ligand (S(2)BMOQO) formed from the reaction of molybdenum tetrasulfide and quinoxalylalkyne. The resulting complexes TEA[Tp*MoX(S(2)BMOQO)] [1, X = S; 3, X = O; TEA = tetraethylammonium; Tp* = hydrotris(3,5-dimethylpyrazolyl)borate] undergo a dehydration-driven intramolecular cyclization within quinoxalyldithiolene, forming Tp*MoX(pyrrolo-S(2)BMOQO) (2, X = S; 4, X = O). 4 can be oxidized by one electron to produce the molybdenum(5+) complex 5. In a preliminary report of this work, evidence from X-ray crystallography, electronic absorption and resonance Raman spectroscopies, and density functional theory (DFT) bonding calculations revealed that 4 possesses an unusual asymmetric dithiolene chelate with significant thione-thiolate character. The results described here provide a detailed description of the reaction conditions that lead to the formation of 4. Data from cyclic voltammetry, additional DFT calculations, and several spectroscopic methods (IR, electronic absorption, resonance Raman, and electron paramagnetic resonance) have been used to characterize the properties of members in this suite of five Mo(S(2)BMOQO) complexes and further substantiate the highly electron-withdrawing character of the pyrrolo-S(2)BMOQO ligand in 2, 4, and 5. This study of the unique noninnocent ligand S(2)BMOQO provides examples of the roles that the N-heterocycle pterin can play as an essential part of the molybdenum cofactor. The versatile nature of a dithiolene appended by heterocycles may aid in modulating the redox processes of the molybdenum center during the course of enzyme catalysis

    Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human

    No full text
    The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well
    corecore