1,605 research outputs found

    Modal Analysis of the Orion Capsule Two Parachute System

    Get PDF
    As discussed in Ref [1], it is apparent from flight tests that the system made up of two main parachutes and a capsule can undergo several distinct dynamical behaviors. The most significant and problematic of these is the pendulum mode in which the system develops a pronounced swinging motion with an amplitude of up to 24 deg. Large excursions away from vertical by the capsule could cause it to strike the ground at a large horizontal or vertical speed and jeopardize the safety of the astronauts during a crewed mission. In reference [1], Ali et al. summarized a series of efforts taken by the Capsule Parachute Assembly System (CPAS) Program to understand and mitigate the pendulum issue. The period of oscillation and location of the system's pivot point are determined from post-flight analysis. Other noticeable but benign modes include: 1) flyout (scissors) mode, where the parachutes move back and forth symmetrically with respect to the vertical axis similar to the motion of a pair of scissors; 2) maypole mode, where the two parachutes circle around the vertical axis at a nearly constant radius and period; and 3) breathing mode, in which deformation of the non-rigid canopies affects the axial acceleration of the system in an oscillatory manner. Because these modes are relatively harm- less, little effort has been devoted to analyzing them in comparison with the pendulum motion. Motions of the actual system made up of two parachutes and a capsule are extremely complicated due to nonlinearities and flexibility effects. Often it is difficult to obtain insight into the fundamental dynamics of the system by examining results from a multi-body simulation based on nonlinear equations of motion (EOMs). As a part of this study, the dynamics of each mode observed during flight is derived from first principles on an individual basis by making numerous simplifications along the way. The intent is to gain a better understanding into the behavior of the complex multi-body system by studying the reduced set of differential equations associated with each mode. This approach is analogous to the traditional modal analysis technique used to study airplane flight dynamics, in which the full nonlinear behavior of the airframe is decomposed into the phugoid and short period modes for the longitudinal dynamics and the spiral, roll-subsidence, and dutch-roll modes for the lateral dynamics. It is important to note that the study does not address the mechanisms that cause the system to transition from one mode to another, nor does it discuss motions during which two or more modes occur simultaneously

    Molecular Auger Decay Rates from Complex-Variable Coupled-Cluster Theory

    Full text link
    The emission of an Auger electron is the predominant relaxation mechanism of core-vacant states in molecules composed of light nuclei. In this non-radiative decay process, one valence electron fills the core vacancy while a second valence electron is emitted into the ionization continuum. Because of this coupling to the continuum, core-vacant states represent electronic resonances that can be tackled with standard quantum-chemical methods only if they are approximated as bound states, meaning that Auger decay is neglected. Here, we present an approach to compute Auger decay rates of core-vacant states from coupled-cluster and equation-of-motion coupled-cluster wave functions combined with complex scaling of the Hamiltonian or, alternatively, complex-scaled basis functions. Through energy decomposition analysis, we illustrate how complex-scaled methods are capable of describing the coupling to the ionization continuum without the need to model the wave function of the Auger electron explicitly. In addition, we introduce in this work several approaches for the determination of partial decay widths and Auger branching ratios from complex-scaled coupled-cluster wave functions. We demonstrate the capabilities of our new approach by computations on core-ionized states of neon, water, dinitrogen, and benzene. Coupled-cluster and equation-of-motion coupled-cluster theory in the singles and doubles approximation both deliver excellent results for total decay widths, whereas we find partial widths more straightforward to evaluate with the former method. We also observe that the requirements towards the basis set are less arduous for Auger decay than for other types of resonances so that extensions to larger molecules are readily possible.Comment: 15 pages, 6 figures, 9 table

    Computational insights into electrochemical cross-coupling of quaternary borate salts

    Get PDF
    Cross-coupling reactions for C–C bond formation represent a cornerstone of organic synthesis. In most cases, they make use of transition metals, which has several downsides. Recently, metal-free alternatives relying on electrochemistry have gained interest. One example of such a reaction is the oxidation of tetraorganoborate salts that initiates aryl–aryl and aryl–alkenyl couplings with promising selectivities. This work investigates the mechanism of this reaction computationally using density functional and coupled-cluster theory. The calculations reveal a distinct difference between aryl–alkenyl and aryl–aryl couplings: While C–C bond formation occurs irreversibly and without an energy barrier if an alkenyl residue is involved, many intermediates can be identified in aryl–aryl couplings. In the latter case, intramolecular transitions between reaction paths leading to different products are possible. Based on the energy differences between these intermediates, a kinetic model to estimate product distributions for aryl–aryl couplings is developed

    Coupled-cluster approach to Coster-Kronig decay and Auger decay in hydrogen sulfide and argon

    Full text link
    We perform ab initio simulations of the total and partial Auger decay widths of 1s^-1, 2s^-1, and 2p^-1 ionized hydrogen sulfide and 2s^-1 ionized argon with non-Hermitian quantum chemistry. We use coupled cluster theory with single and double substitutions (CCSD) and equation of motion CCSD (EOM-CCSD) and discuss the novel application of (equation of motion-) second order M{\o}ller-Plesset perturbation theory (MP2). We find good agreement between the methods for the 1s^-1 hole of H2S, whereas for the other holes we can only use the EOM methods. We obtain very large decay widths of the 2s^-1-vacant states due to intense Coster-Kronig transitions with excellent agreement to experiments. The three 2p^-1 holes show completely different spectra because a decay channel is only significant when one of the final holes is spatially aligned with the initial hole. Lastly, we observe that triplet channels are much more important for the 2s^-1 and 2p^-1 holes than for the 1s^-1 hole, for which it is well known that triplet channels only contribute weakly to the total Auger intensity

    [Accepted Manuscript] Worldwide comparison of ovarian cancer survival: Histological group and stage at diagnosis (CONCORD-2)

    Get PDF
    Ovarian cancer comprises several histological groups with widely differing levels of survival. We aimed to explore international variation in survival for each group to help interpret international differences in survival from all ovarian cancers combined. We also examined differences in stage-specific survival. The CONCORD programme is the largest population-based study of global trends in cancer survival, including data from 60 countries for 695,932 women (aged 15-99years) diagnosed with ovarian cancer during 1995-2009. We defined six histological groups: type I epithelial, type II epithelial, germ cell, sex cord-stromal, other specific non-epithelial and non-specific morphology, and estimated age-standardised 5-year net survival for each country by histological group. We also analysed data from 67 cancer registries for 233,659 women diagnosed from 2001 to 2009, for whom information on stage at diagnosis was available. We estimated age-standardised 5-year net survival by stage at diagnosis (localised or advanced). Survival from type I epithelial ovarian tumours for women diagnosed during 2005-09 ranged from 40 to 70%. Survival from type II epithelial tumours was much lower (20-45%). Survival from germ cell tumours was higher than that of type II epithelial tumours, but also varied widely between countries. Survival for sex-cord stromal tumours was higher than for the five other groups. Survival from localised tumours was much higher than for advanced disease (80% vs. 30%). There is wide variation in survival between histological groups, and stage at diagnosis remains an important factor in ovarian cancer survival. International comparisons of ovarian cancer survival should incorporate histology

    Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human

    No full text
    The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well

    [Accepted Manuscript] Worldwide comparison of ovarian cancer survival: Histological group and stage at diagnosis (CONCORD-2)

    Get PDF
    Ovarian cancer comprises several histological groups with widely differing levels of survival. We aimed to explore international variation in survival for each group to help interpret international differences in survival from all ovarian cancers combined. We also examined differences in stage-specific survival. The CONCORD programme is the largest population-based study of global trends in cancer survival, including data from 60 countries for 695,932 women (aged 15-99years) diagnosed with ovarian cancer during 1995-2009. We defined six histological groups: type I epithelial, type II epithelial, germ cell, sex cord-stromal, other specific non-epithelial and non-specific morphology, and estimated age-standardised 5-year net survival for each country by histological group. We also analysed data from 67 cancer registries for 233,659 women diagnosed from 2001 to 2009, for whom information on stage at diagnosis was available. We estimated age-standardised 5-year net survival by stage at diagnosis (localised or advanced). Survival from type I epithelial ovarian tumours for women diagnosed during 2005-09 ranged from 40 to 70%. Survival from type II epithelial tumours was much lower (20-45%). Survival from germ cell tumours was higher than that of type II epithelial tumours, but also varied widely between countries. Survival for sex-cord stromal tumours was higher than for the five other groups. Survival from localised tumours was much higher than for advanced disease (80% vs. 30%). There is wide variation in survival between histological groups, and stage at diagnosis remains an important factor in ovarian cancer survival. International comparisons of ovarian cancer survival should incorporate histology

    Context-Aware Prediction of User Engagement on Online Social Platforms

    Full text link
    The success of online social platforms hinges on their ability to predict and understand user behavior at scale. Here, we present data suggesting that context-aware modeling approaches may offer a holistic yet lightweight and potentially privacy-preserving representation of user engagement on online social platforms. Leveraging deep LSTM neural networks to analyze more than 100 million Snapchat sessions from almost 80.000 users, we demonstrate that patterns of active and passive use are predictable from past behavior (R2=0.345) and that the integration of context information substantially improves predictive performance compared to the behavioral baseline model (R2=0.522). Features related to smartphone connectivity status, location, temporal context, and weather were found to capture non-redundant variance in user engagement relative to features derived from histories of in-app behaviors. Further, we show that a large proportion of variance can be accounted for with minimal behavioral histories if momentary context information is considered (R2=0.44). These results indicate the potential of context-aware approaches for making models more efficient and privacy-preserving by reducing the need for long data histories. Finally, we employ model explainability techniques to glean preliminary insights into the underlying behavioral mechanisms. Our findings are consistent with the notion of context-contingent, habit-driven patterns of active and passive use, underscoring the value of contextualized representations of user behavior for predicting user engagement on social platforms
    corecore