497 research outputs found

    Two-orbital Hubbard model vs spin S=1S=1 Heisenberg model: studies on clusters

    Full text link
    We perform exact numeric calculations for the two-orbital Hubbard model on the four-site cluster. In the limit of large on-site coupling the model becomes equivalent to the spin S=1S=1 Heisenberg model. By comparing energy spectra of these two models, we quantified the range of interaction parameters for which the Heisenberg model satisfactorily reproduces the two-orbital Hubbard model. Then we examined how the spectrum evolves when we are outside of this region, focusing especially on checking of how it is modified when various ways of interatomic hoppings of electrons between different orbitals are taken into account. We finally show how these modifications affect the dependence of specific heat on temperature.Comment: 8 pages, 7 figures, 2 table

    Bose glass behavior in (Yb1x_{1-x}Lux_x)4_4As3_3 representing the randomly diluted quantum spin-1/2 chains

    Full text link
    The site-diluted compound (Yb1x_{1-x}Lux_x)4_4As3_3 is a scarce realization of the linear Heisenberg antiferromagnet partitioned into finite-size segments and is an ideal model compound for studying field-dependent effects of quenched disorder in the one-dimensional antiferromagnets. It differentiates from the systems studied so far in two aspects - the type of randomness and the nature of the energy gap in the pure sample. We have measured the specific heat of single-crystal (Yb1x_{1-x}Lux_x)4_4As3_3 in magnetic fields up to 19.5 T. The contribution CC_{\perp} arising from the magnetic subsystem in an applied magnetic field perpendicular to the chains is determined. Compared to pure Yb4_4As3_3, for which CC_{\perp} indicates a gap opening, for diluted systems a non-exponential decay is found at low temperatures which is consistent with the thermodynamic scaling of the specific heat established for a Bose-glass phase.Comment: 8 pages, 17 figures, including supplemental material, accepted for PRB rapid communicatio

    Effect of pressure on synthesis of Pr-doped zirconia powders produced by microwave-driven hydrothermal reaction

    Get PDF
    A high-pressure microwave reactor was used to study the hydrothermal synthesis of zirconia powders doped with 1 mol % Pr.The synthesis was performed in the pressure range from 2 to 8MPa corresponding to a temperature range from 215◦C to 305◦C.This technology permits a synthesis of nanopowders in short time not limited by thermal inertia of the vessel. Microwave heatingpermits to avoid contact of the reactants with heating elements, and is thus particularly well suited for synthesis of dopednanopowders in high purity conditions. A mixture of ZrO2 particles with tetragonal and monoclinic crystalline phases, about15nm in size, was obtained. The p/T threshold of about 5-6MPa/265–280◦C was necessary to obtain good quality of zirconiapowder. A new method for quantitative description of grain-size distribution was applied, which is based on analysis of the finestructure of the X-ray diffraction line profiles. It permitted to follow separately the effect of synthesis conditions on the grain-size distribution of the monoclinic and tetragonal phases

    Effect of Pressure on Synthesis of Pr-Doped Zirconia Powders Produced by Microwave-Driven Hydrothermal Reaction

    Get PDF
    A high-pressure microwave reactor was used to study the hydrothermal synthesis of zirconia powders doped with 1 mol % Pr. The synthesis was performed in the pressure range from 2 to 8 MPa corresponding to a temperature range from 215C∘ to 305C∘. This technology permits a synthesis of nanopowders in short time not limited by thermal inertia of the vessel. Microwave heating permits to avoid contact of the reactants with heating elements, and is thus particularly well suited for synthesis of doped nanopowders in high purity conditions. A mixture of ZrO2 particles with tetragonal and monoclinic crystalline phases, about 15 nm in size, was obtained. The p/T threshold of about 5-6 MPa/265–280C∘ was necessary to obtain good quality of zirconia powder. A new method for quantitative description of grain-size distribution was applied, which is based on analysis of the fine structure of the X-ray diffraction line profiles. It permitted to follow separately the effect of synthesis conditions on the grain-size distribution of the monoclinic and tetragonal phases
    corecore