11 research outputs found

    Potential physiological stress biomarkers in human sweat

    Get PDF
    Emotional sweating occurs in response to affective stimuli like fear, anxiety, or stress and is more evident in specific parts of the body such as the palms, soles, and axillae. During emotional sweating, humans release many volatile organic compounds (VOCs) that could play a crucial role as possible com-municative signals of specific emotions. In this preliminary study, we investigated seven volatiles belonging to the chemical class of acids and released from the armpit as possible stress biomarkers. To this aim, we processed sweat VOCs and physiological stress correlates such as heart rate variability (HRV), electrodermal activity, and thermal imaging during a Stroop color-word test. Particularly, we modelled the variability of well-known stress markers extracted from the physiological signals as a function of the acid VOCs by means of LASSO regression. LASSO results revealed that the dodecanoic acid was the only selected regressor and it was able to significantly explain more than 64 % of the variance of both the mean temperature of the tip of the nose (p=0.018, R2=0.64) and of the mean HRV (p=0.011, R2=0.67). Although preliminary, our results suggest that dodecanoic acid could be a marker of the sympathetic nervous system response to stress stimuli, opening for the detection of new biomarkers of stress

    Bioavailability of organic contaminants in a changing climate

    No full text
    The effects of predicted future climate change was investigated with special emphasis on the association of organic contaminants with dissolved organic carbon (DOC) in the Baltic Sea. An automated method was developed for the measurements of DOC - water distribution constants at realistic DOC concentrations in brackish water. The method proved to be valid for 30 organic contaminants with different structural elements in the 5 – 100 mg car bon/L DOC concentration range. There were limitations of this method. Firstly, its applicability is limited towards contaminants with lower affinity to DOC. Secondly, at higher (>100 mg carbon/L) DOC concentrations the sorption of contaminants was underest imated. Afterwards, water samples were collected from 15 points within the Baltic Sea in a north - south gradient t o examine the spatial differences in DOC characteristics and sorption properties . The DOC samples were analyzed using proton nuclear magnetic resonance and ultraviolet spectroscopy. Results from both techniques indicated that the aromatic nature of the DOC pool increased towards the northern Baltic Sea. This was expected as the freshwater inflow has high significance in controlling the hydrograp hic conditions in the Bothnian Bay. Sorption of organic contaminants was subsequently measured in the same samples. The results showed decreased sorption from north to south for hydrophobic contaminants such as chlorinated benzenes but for contaminants lik e tributyl - phosphate no spatial tendencies were observed. The data generated was used to determine molecular descriptors of DOC using linear free energy relationships. The results indicated a higher significance of hy drogen bond donor/acceptor functional g roups of the DOC in the south. Changes in contaminant distribution were simulated in model pelagic ecosystems at possible endpoints predicted by future climate change scenarios. Separate and combined effects of temperature a nd DOC were studied in mesocosms. The results indicated interesting tendencies. Increased temperature resulted in increased losses in the amounts of organic contaminants. Increased DOC levels promoted sedimentation and sorption of contaminants to particulate matter and biota. Hi gher amounts of contaminants were retained. The combined effects of the two factors led to and overall decrease in dissolved amounts. Higher losses or increased sedimentation and sorption to particles were also observed depending on contaminant properties.EcoChang

    Analysis of volatile organic compounds in indoor environments using thermal desorption with comprehensive two-dimensional gas chromatography and high-resolution time-of-flight mass spectrometry

    No full text
    Building-related health effects are frequently observed. Several factors have been listed as possible causes including temperature, humidity, light conditions, presence of particulate matter, and microorganisms or volatile organic compounds. To be able to link exposure to specific volatile organic compounds to building-related health effects, powerful and comprehensive analytical methods are required. For this purpose, we developed an active air sampling method that utilizes dual-bed tubes loaded with TENAX-TA and Carboxen-1000 adsorbents to sample two parallel air samples of 4 L each. For the comprehensive volatile organic compounds analysis, an automated thermal desorption comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry method was developed and used. It allowed targeted analysis of approximately 90 known volatile organic compounds with relative standard deviations below 25% for the vast majority of target volatile organic compounds. It also allowed semiquantification (no matching standards) of numerous nontarget air contaminants using the same data set. The nontarget analysis workflow included peak finding, background elimination, feature alignment, detection frequency filtering, and tentative identification. Application of the workflow to air samples from 68 indoor environments at a large hospital complex resulted in a comprehensive volatile organic compound characterization, including 178 single compounds and 13 hydrocarbon groups

    Isolation of single molecules from complex GCxGC chromatograms

    No full text
    We developed a novel approach capable of isolating and recollecting nearly any molecule from complex GCxGC chromatograms. This was achieved by modifying a GCxGC-Q-TOF system with a Deans switch, a passive splitter, and careful adjustments of flows and capillary dimensions. The setup was evaluated with more than a hundred standard chemicals covering a wide range of volatility (boiling points: 56 – 343 ⁰C) and polarity (log P: -0.2 – 9.4). We found that recovery from tube to tube can become highly efficient if a custom-made adapter is attached directly on the FID port (average recovery rate of 76 ± 7%). Furthermore, we could achieve an isolation down to a minimum distance of 50 ms between baseline separated eluting peaks. In addition, the setup was designed for easy adaptation by repurposing existing instrument control software to define the isolation windows for the compounds of interest (first and second column retention time windows). We expect this novel development to allow several new applications, e.g., the isolation or selective enrichment of molecules in food and flavour analysis; the investigation of suspect chemicals (incl. unknowns) for effect directed analysis (e.g., bioassays), and the isolation of chemicals for further chemical analysis

    Biological studies with comprehensive GCxGC-HRMS screening: Exploring the human sweat volatilome

    No full text
    A key issue in GCxGC-HRMS data analysis is how to approach large-sample studies in an efficient and comprehensive way. We have developed a semi-automated data-driven workflow from identification to suspect screening, which allows highly selective monitoring of each identified chemical in a large-sample dataset. The example dataset used to illustrate the potential of the approach consisted of human sweat samples from 40 participants, including field blanks (80 samples). These samples have been collected in a Horizon 2020 project to investigate the capacity of body odour to communicate emotion and influence social behaviour. We used dynamic headspace extraction, which allows comprehensive extraction with high preconcentration capability, and has to date only been used for a few biological applications. We found 325 sweat volatiles compared to 581 known skin volatiles, 107 of which matched perfectly with the literature, and 218 compounds (67%) novel sweat volatiles. Unlike partitioning-based extraction methods, the developed method detects semi-polar (log P < 2) nitrogen and oxygen-containing compounds. However, it is unable to detect certain acids due to the pH conditions of unmodified sweat samples. Using a single analytical method, our coverage of the boiling point and polarity space was comparable to the cumulative coverage of all the available 35 studies investigating skin volatiles with different analytical methods. We believe that our framework will open up the possibility of efficiently using GCxGC-HRMS for large-sample studies in a wide range of applications such as biological and environmental studies

    Microbial food web changes induced by terrestrial organic matter and elevated temperature in the coastal northern Baltic Sea

    No full text
    Climate change has been projected to cause increased temperature and amplified inflows of terrestrial organic matter to coastal areas in northern Europe. Consequently, changes at the base of the food web favoring heterotrophic bacteria over phytoplankton are expected, affecting the food web structure. We tested this hypothesis using an outdoor shallow mesocosm system in the northern Baltic Sea in early summer, where the effects of increased temperature (+ 3°C) and terrestrial matter inputs were studied following the system dynamics and conducting grazing experiments. Juvenile perch constituted the highest trophic level in the system, which exerted strong predation on the zooplankton community. Perch subsequently released the microbial food web from heavy grazing by mesozooplankton. Addition of terrestrial matter had a stronger effect on the microbial food web than the temperature increase, because terrestrial organic matter and accompanying nutrients promoted both heterotrophic bacterial production and phytoplankton primary production. Moreover, due to the shallow water column in the experiment, terrestrial matter addition did not reduce the light below the photosynthesis saturation level, and in these conditions, the net-autotrophy was strengthened by terrestrial matter enrichment. In combination with elevated temperature, the terrestrial matter addition effects were intensified, further shifting the size distribution of the microbial food web base from picoplankton to microphytoplankton. These changes up the food web led to increase in the biomass and proportion of large-sized ciliates (&gt;60 ”m) and rotifers. Despite the shifts in the microbial food web size structure, grazing experiments suggested that the pathway from picoplankton to nano- and microzooplankton constituted the major energy flow in all treatments. The study implies that the microbial food web compartments in shallow coastal waters will adjust to climate induced increased inputs of terrestrial matter and elevated temperature, and that the major energy path will flow from picoplankton to large-sized ciliates during the summer period

    Effects of Organic Pollutants on Bacterial Communities Under Future Climate Change Scenarios

    Get PDF
    Coastal ecosystems are highly dynamic and can be strongly influenced by climate change, anthropogenic activities (e.g. pollution) and a combination of the two pressures. As a result of climate change, the northern hemisphere is predicted to undergo an increased precipitation regime, leading in turn to higher terrestrial runoff and increased river inflow. This increased runoff will transfer terrestrial dissolved organic matter (tDOM) and anthropogenic contaminants to coastal waters. Such changes can directly influence the resident biology, particularly at the base of the food web, and can influence the partitioning of contaminants and thus their potential impact on the food web. Bacteria have been shown to respond to high tDOM concentration and organic pollutants loads, and could represent the entry of some pollutants into coastal food webs. We carried out a mesocosm experiment to determine the effects of: 1) increased tDOM concentration, 2) organic pollutant exposure, and 3) the combined effect of these two factors, on pelagic bacterial communities. This study showed significant responses in bacterial community composition under the three environmental perturbations tested. The addition of tDOM increased bacterial activity and diversity, while the addition of organic pollutants led to an overall reduction of these parameters, particularly under concurrent elevated tDOM concentration. Furthermore, we identified 33 bacterial taxa contributing to the significant differences observed in community composition, as well as 35 bacterial taxa which responded differently to extended exposure to organic pollutants. These findings point to the potential impact of organic pollutants under future climate change conditions on the basal coastal ecosystem, as well as to the potential utility of natural bacterial communities as efficient indicators of environmental disturbance.Peer reviewe

    Air–Water Exchange of Brominated Anisoles in the Northern Baltic Sea

    No full text
    Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011–2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA) > 2,4-dibromoanisole (2,4-DBA) ≫ 2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA > 2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980–1360 kg of total BAs from Bothnian Bay (38000 km<sup>2</sup>) between May and September. The release of bromine from outgassing of BAs could be up to 4–6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes

    Atmospheric pathways of chlorinated pesticides and natural bromoanisoles in the northern Baltic Sea and its catchment

    No full text
    Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011-2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069-2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air-sea gas exchange and "bulk'' (precipitation ? dry particle) deposition, resulting in net gains of 53 and 46 kg year(-1) for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year(-1) for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment
    corecore