15 research outputs found

    Stabilita mRNA a aktivita mikroRNA v myších oocytech

    Get PDF
    SOUHRN Přerod oocytu v zygotu představuje jediný fyziologický děj během životního cyklu savců, při kterém se z diferenciované buňky stává buňka pluripotentní. Toto buněčné přeprogramování je z velké většiny závislé na bezchybné post-transkripční regulaci maternálních mRNA. Porozumění mechanismům post-transkripční regulace v oocytech proto povede k významnému rozšíření našeho poznání v otázce buněčného přeprogramování. Mezi důležité post-transkripční regulátory v širokém spektru buněčných a vývojových procesů patří nedávno objevené krátké nekódující mikroRNA. Jejich funkce spočívá v represi cílených mRNA za pomoci proteinových komplexů, které spouštějí deadenylaci a odstranění ochranné čepičky z 5'-konce. Zmíněné komplexy se za normálních okolností sdružují v tzv. procesních tělískách (P-tělíska) v cytoplasmě. Tato práce přináší nečekané zjištění, že mikroRNA dráha je umlčená v plně dorostlých myších oocytech i během přerodu oocytu do zygoty. Toto zjištění je v souladu s pozorovaným rozpadem P-tělísek závislých na funkci mikroRNA během růstu oocytu a jejich absenci v plně dorostlých oocytech. Některé proteiny běžně obsažené v P-tělískách lokalizují v plně dorostlých oocytech do kortikální oblasti. Spolu s dalšími RNA-vazebnými faktory vytvářejí tyto proteiny ve finální fázi oocytárního růstu sub- kortikální...The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical...First Faculty of Medicine1. lékařská fakult

    γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis

    Get PDF
    γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity

    Messenger RNA stability and microRNA activity in mouse oocytes

    No full text
    The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical..

    Messenger RNA stability and microRNA activity in mouse oocytes

    No full text
    The oocyte-to-zygote transition represents the only physiological event in mammalian life cycle, during which a differentiated cell is reprogrammed to become pluripotent. For its most part, the reprogramming relies on the accurate post-transcriptional control of maternally deposited mRNAs. Therefore, understanding the mechanisms of post-transcriptional regulation in the oocyte will help improve our knowledge of cell reprogramming. Short non- coding microRNAs have recently emerged as an important class of post-transcriptional regulators in a wide range of cellular and developmental processes. MicroRNAs repress their mRNA targets via recruitment of deadenylation and decapping complexes, which typically accumulate in cytoplasmic Processing bodies (P-bodies). The presented work uncovers an unexpected feature of the microRNA pathway which is found to be suppressed in fully-grown mouse oocytes and through the entire process of oocyte-to-zygote transition. This finding is consistent with the observation that microRNA-related P-bodies disassemble early during oocyte growth and are absent in fully-grown oocytes. Some of the proteins normally associated with P-bodies localize to the oocyte cortex. At the final stage of oocyte growth, these proteins, together with other RNA-binding factors, form subcortical..

    Phospholipase D Activation Is an Early Component of the Salicylic Acid Signaling Pathway in Arabidopsis Cell Suspensions1[W][OA]

    No full text
    Salicylic acid (SA) plays a central role in defense against pathogen attack, as well as in germination, flowering, senescence, and the acquisition of thermotolerance. In this report we investigate the involvement of phospholipase D (PLD) in the SA signaling pathway. In presence of exogenous primary alcohols, the production of phosphatidic acid by PLD is diverted toward the formation of phosphatidylalcohols through a reaction called transphosphatidylation. By in vivo metabolic phospholipid labeling with 33Pi, PLD activity was found to be induced 45 min after addition of SA. We show that incubation of Arabidopsis (Arabidopsis thaliana) cell suspensions with primary alcohols inhibited the induction of two SA-responsive genes, PATHOGENESIS-RELATED1 and WRKY38, in a dose-dependent manner. This inhibitory effect was more pronounced when the primary alcohols were more hydrophobic. Secondary or tertiary alcohols had no inhibitory effect. These results provide compelling arguments for PLD activity being upstream of the induction of these genes by SA. A subsequent study of n-butanol effects on the SA-responsive transcriptome identified 1,327 genes differentially expressed upon SA treatment. Strikingly, the SA response of 380 of these genes was inhibited by n-butanol but not by tert-butanol. A detailed analysis of the regulation of these genes showed that PLD could act both positively and negatively, either on gene induction or gene repression. The overlap with the previously described phosphatidylinositol-4-kinase pathway is discussed

    γ-Tubulin 2 rescues microtubule formation in γ-tubulin 1-depleted cells during interphase.

    No full text
    <p>Time-lapse imaging of U2OS-EB1 cells for quantitative evaluation of microtubule (+) end dynamics. Cells with depleted γ-tubulin 1 (KD2) expressing either TagRFP (pCI-TagRFP), mouse γ-tubulin 1 (pmTubg1-TagRFP) or human γ-tubulin 2 (phTUBG2-TagRFP). Cells with empty vector (pLKO.1) expressing TagRFP (pCI-TagRFP) served as negative control. (a–d) Still images of typical cells selected for evaluation. Only cells expressing both EB1-GFP (green) and TagRFP (red) or γ-tubulin-TagRFP fusions (red) were evaluated. In contrast to freely diffusible TagRFP (a, b), γ-tubulin-TagRFP fusions properly localized to MTOCs (c, d) marked by white arrows. (e–f) Maximum intensity projections of 60 consecutive time-frames from acquired time-lapse sequences. Note the markedly lower density of microtubule tracks in cell with depleted human γ-tubulin 1 (f). Microtubule track density is rescued in cells expressing exogenous mouse γ-tubulin 1 (g) or exogenous human γ-tubulin 2 (h). Scale bar 10 µm.</p

    Electrophoretic distinction of mouse γ-tubulins on 2D-PAGE.

    No full text
    <p>Immunoblots of mouse P19 cell extracts separated by 2D-PAGE probed with antibody to γ-tubulin. Wild-type cells (wt), cells expressing exogenous untagged mouse γ-tubulin 1 (+γ-Tb1) or mouse γ-tubulin 2 (+γ-Tb2). Molecular mass markers (in kDa) are indicated on the right. The pI scale is shown along the bottom of the figure. IEF, isoelectric focusing. Arrowhead indicates the position of mouse γ-tubulin 2.</p

    γ-Tubulin 2 restores normal mitotic spindle functioning in γ-tubulin 1-depleted cells.

    No full text
    <p>U2OS cells depleted of γ-tubulin 1 and expressing FLAG-tagged mouse γ-tubulin 1 (a-d, Tubg1-FLAG), mouse γ-tubulin 2 (e-h, Tubg2-FLAG) or human γ-tubulin 2 (i–l, TUBG2-FLAG) were stained for FLAG (a, e, i; red) and β-tubulin (b, f, j; green). DNA was stained with DAPI (c, g, k; blue). Scale bar 20 µm.</p
    corecore