8 research outputs found

    Polymeric materials with multiple crystalline phases: structure, morphology and crystallization

    Get PDF
    303 p.El objetivo de esta tesis doctoral es el análisis y la comparación de sistemas poliméricos multifásicos con al menos dos fases cristalizables, para diseñar y desarrollar nuevos materiales con propiedades mejoradas. La primera parte se centra en el estudio de mezclas PET/HDPE doblemente cristalinas con nanopartículas de titanio dióxido (tres tipos) y agentes compatibilizantes. La reducción de tamaño de partícula como consecuencia de la adición de las nanopartículas mejora las propiedades mecánicas.La segunda parte del trabajo consiste en el estudio de copolímeros de bloques multicristalinos. La adición de un tercer y cuarto bloque cristalino hace el análisis mucho más desafiante, pero se han identificado las cristalizaciones de todos los bloques en: terpolímeros PE-b-PEO-b-PLLA y PE-b-PCL-b-PLLA, y tetrapolímeros PE-b-PEO-b-PCL-b-PLLA y sus correspondientes terpolímeros (PE-b-PEO-b-PCL) y demás precursores (PE-b-PEO y PE). El efecto de la velocidad de enfriamiento (20 vs. 1 ºC/min) en los terpolímeros PE-b-PEO-b-PLLA y PE-b-PCL-b-PLLA hace variar la secuencia de cristalización, siendo a20 ºC/min el bloque de PE el primero en cristalizar, mientras que a 1 ºC/min la cristalización comienza con el bloque de PLLA, finalizando en todos los casos con los bloques de PEO o PCL, lo que dará lugar a distintas morfologías y propiedades mecánicas. El estudio de los tetrapolímeros (PE-b-PEO-b-PCL-b-PLLA) y sus terpolímeros precursores (PE-b-PEO-b-PCL) mediante DSC, SAXS/WAXS y PLOM demuestra su naturaleza triple- y tetra- cristalina, siguiendo las secuencias de cristalización e identificando esferulitas triple- y tetracristalinas

    Crystallization and Morphology of Triple Crystalline Polyethylene-b-poly(ethylene oxide)-b-poly(ε-caprolactone) PE-b-PEO-b-PCL Triblock Terpolymers

    Get PDF
    The morphology and crystallization behavior of two triblock terpolymers of polymethylene, equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are studied: PE227.1-b-PEO4615.1-b-PCL3210.4 (T1) and PE379.5-b-PEO348.8-b-PCL297.6 (T2) (superscripts give number average molecular weights in kg/mol and subscripts composition in wt %). The three blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated. Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies were combined to synthesize the triblock terpolymers. In addition, the corresponding PE-b-PEO diblock copolymers and PE homopolymers were also analyzed. The crystallization sequence of the blocks was determined via three independent but complementary techniques: differential scanning calorimetry (DSC), in situ SAXS/WAXS (small angle X-ray scattering/wide angle X-ray scattering), and polarized light optical microscopy (PLOM). The two terpolymers (T1 and T2) are weakly phase segregated in the melt according to SAXS. DSC and WAXS results demonstrate that in both triblock terpolymers the crystallization process starts with the PE block, continues with the PCL block, and ends with the PEO block. Hence triple crystalline materials are obtained. The crystallization of the PCL and the PEO block is coincident (i.e., it overlaps); however, WAXS and PLOM experiments can identify both transitions. In addition, PLOM shows a spherulitic morphology for the PE homopolymer and the T1 precursor diblock copolymer, while the other systems appear as non-spherulitic or microspherulitic at the last stage of the crystallization process. The complicated crystallization of tricrystalline triblock terpolymers can only be fully grasped when DSC, WAXS, and PLOM experiments are combined. This knowledge is fundamental to tailor the properties of these complex but fascinating materials.This research received funding from MINECO through projects MAT2017-83014-C2-1-P, from the Basque Government through grant IT1309-19, and from ALBA synchrotron facility through granted proposal u2020084441 (March 2020). We would like to thank the financial support provided by the BIODEST project; this project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 778092. GZ, VL, and NH wish to acknowledge the support of KAUST

    Sequential Crystallization and Multicrystalline Morphology in PE‑b‑PEO‑b‑PCL‑b‑PLLA Tetrablock Quarterpolymers

    Get PDF
    Unformatted post-print version of the accepted articleWe investigate for the first time the morphology and crystallization of two novel tetrablock quarterpolymers of polyethylene (PE), poly(ethylene oxide) (PEO), poly(ε-caprolactone) (PCL), and poly(L-lactide) (PLLA) with four potentially crystallizable blocks: PE18 7.1-b-PEO37 15.1-b-PCL26 10.4-b-PLLA19 7.6 (Q1) and PE29 9.5-b-PEO26 8.8-b-PCL23 7.6-b-PLLA22 7.3 (Q2) (superscripts give number average molecular weights in kg/mol, and subscripts give the composition in wt %). Their synthesis was performed by a combination of polyhomologation (C1 polymerization) and ring-opening polymerization techniques using a ″catalyst-switch″ strategy, either ″organocatalyst/metal catalyst switch″ (Q1 sample, 96% isotactic tetrads) or ″organocatalyst/ organocatalyst switch″ (Q2 sample, 84% isotactic tetrads). Their corresponding precursorstriblock terpolymers PE-b-PEO-b-PCL, diblock copolymers PE-b-PEO, and PE homopolymerswere also studied. Cooling and heating rates from the melt at 20 °C/min were employed for most experiments: differential scanning calorimetry (DSC), polarized light optical microscopy (PLOM), in situ small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS), and atomic force microscopy (AFM). The direct comparison of the results obtained with these different techniques allows the precise identification of the crystallization sequence of the blocks upon cooling from the melt. SAXS indicated that Q1 is melt miscible, while Q2 is weakly segregated in the melt but breaks out during crystallization. According to WAXS and DSC results, the blocks follow a sequence as they crystallize: PLLA first, then PE, then PCL, and finally PEO in the case of the Q1 quarterpolymer; in Q2, the PLLA block is not able to crystallize due to its low isotacticity. Although the temperatures at which the PEO and PCL blocks and the PE and PLLA blocks crystallize overlap, the analysis of the intensity changes measured by WAXS and PLOM experiments allows identifying each of the crystallization processes. The quarterpolymer Q1 remarkably self-assembles during crystallization into tetracrystalline banded spherulites, where four types of different lamellae coexist. Nanostructural features arising upon sequential crystallization are found to have a relevant impact on the mechanical properties. Nanoindentation measurements show that storage modulus and hardness of the Q1 quarterpolymer significantly deviate from those of the stiff PE and PLLA blocks, approaching typical values of compliant PEO and PCL. Results are mainly attributed to the low crystallinity of the PE and PLLA blocks. Moreover, the Q2 copolymer exhibits inferior mechanical properties than Q1, and this can be related to the PE block within Q1 that has thinner crystal lamellae according to its much lower melting point.This work has received funding from MINECO through projects MAT2017-83014-C2-1-P and MAT2017-88382-P, from the Basque Government through grant IT1309-19, and from the ALBA synchrotron facility through granted proposal u2020084441 (March 2020). We would like to thank the financial support provided by the BIODEST project; this project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 778092

    Crystallization-Driven Supramolecular Gelation of Poly(vinyl alcohol) by a Small Catechol Derivative

    Get PDF
    Catechol-containing molecules have been recognized as versatile building blocks for polymer structures with tailor-made functional properties. While catechol chemistry via metal-ligand coordination, boronate complexation, and oxidation-driven covalent bonds has been well examined in the past, the hydrogen bonding ability of these intriguing molecules has been dismissed. In this research, we investigated the gelation of poly(vinyl alcohol) (PVA) triggered by the crystallization of a 3,4-dihydroxy-catechol in water. Strong hydrogen bond interactions between PVA and catechol groups afforded supramolecular hydrogels with near-covalent elastic moduli, yet dynamic, exhibiting reversible gel-to-sol phase transitions around 50-60 °C. We studied the impact of the catechol derivative concentration on the gelation kinetics and physicochemical properties of these dynamic materials. Isothermal experiments revealed that heterogeneous crystallization governs the gelation kinetics. Moreover, because of the quasi-permanent cross-links within the supramolecular polymer network, these hydrogels benefit from ultrastretchability (∼600%) and high toughness (900 kJ·m-3). Our gelation approach is expected to expand the toolbox of catechol chemistry, opening up new avenues in designing dynamic soft materials with facile control over the phase transition, mechanics, and viscoelastic properties.Fil: Bonafe Allende, Juan Cruz. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; ArgentinaFil: Schmarsow, Ruth Noemí. Universidad del País Vasco; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Matxinandiarena, Eider. Universidad del País Vasco; EspañaFil: García Schejtman, Sergio David. Universidad Nacional de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Alvarezigarzabal, Cecilia I.. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; ArgentinaFil: Picchio, Matías Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad del País Vasco; EspañaFil: Müller, Alejandro J.. Universidad del País Vasco; Españ

    The effect of titanium dioxide surface modification on the dispersion, morphology, and mechanical properties of recycled PP/PET/TiO2 PBNANOs

    Get PDF
    Titanium dioxide (TiO2) nanoparticles have recently appeared in PET waste because of the introduction of opaque PET bottles. We prepare polymer blend nanocomposites (PBNANOs) by adding hydrophilic (hphi), hydrophobic (hpho), and hydrophobically modified (hphoM) titanium dioxide (TiO2) nanoparticles to 80rPP/20rPET recycled blends. Contact angle measurements show that the degree of hydrophilicity of TiO2 decreases in the order hphi > hpho > hphoM. A reduction of rPET droplet size occurs with the addition of TiO2 nanoparticles. The hydrophilic/hydrophobic balance controls the nanoparticles location. Transmission electron microscopy (TEM_ shows that hphi TiO2 preferentially locates inside the PET droplets and hpho at both the interface and PP matrix. HphoM also locates within the PP matrix and at the interface, but large loadings (12%) can completely cover the surfaces of the droplets forming a physical barrier that avoids coalescence, leading to the formation of smaller droplets. A good correlation is found between the crystallization rate of PET (determined by DSC) and nanoparticles location, where hphi TiO2 induces the highest PET crystallization rate. PET lamellar morphology (revealed by TEM) is also dependent on particle location. The mechanical behavior improves in the elastic regime with TiO2 addition, but the plastic deformation of the material is limited and strongly depends on the type of TiO2 employed

    Influence of chain topology on gel formation and direct ink printing of model linear and star block copolymers with poly(ethylene oxide) and poly(ε-caprolactone) semi-crystalline blocks

    Get PDF
    In this work, a set of well-defined linear triblock copolymers and star block copolymers (3 and 4-arms) with semi crystalline blocks consisting of poly(ethylene oxide) (PEO) and poly(epsilon-caprolactone) (PCL), synthesized by combining ring-opening polymerization and organic catalyst switch strategy, were studied as thermosensitive gel-forming biomaterials for applications in 3D extrusion printing. The hydrogels derived from linear copolymers underwent a temperature-dependent sol-gel-sol transition, behaving as a flowing sol at room temperature and transforming into a non-flowing gel upon heating. On the other hand, the hydrogels derived from 4-arm star block copolymers experienced a gel-sol transition and did not flow at room temperature. This behavior allowed them to be used as 3D printing inks at room temperature. 3D printing results revealed that the semi-crystalline hydrogels of the 4-arm star block copolymers could not only be extruded and printed with high shape fidelity, but they also exhibited a favorable dissolution profile for their use as sacrificial biomaterial inks. Additionally, we thoroughly investigated the crystalline organization of the PCL and the PEO blocks within the hydrogels through comparison with the results obtained in bulk. The results demonstrated evident structural ordering in the hydrogels associated with the crystallization of the PCL blocks. Unexpectedly, DSC results combined with SAXS experiments revealed the presence of PEO block crystals within the 30 % w/v hydrogels from 4-arm star block copolymers, in addition to the PCL block crystals. Hence, remarkable double crystalline hydrogels have been obtained for the first time.This research was financially supported by the projects PID2020-113045GB-C21 and PID2020-113045GB-C22 funded by MCIN/ AEI /10.13039/501100011033 and by the Basque Government through grant IT1503-22. M.I.P. acknowledges funding through an FPI contract (PRE2018-086104) to develop a PhD thesis. The support of the ALBA (2022086944 and 2022086957 proposals) synchrotron facility is gratefully acknowledged. R.H. is a member of the CSIC Interdisciplinary Thematic Platform (PTI+) Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy+ (PTI-SusPlast+) and the PTI CSIC FAB3D. The authors would also like to thank Alejandro Hernandez-Sosa for assistance regarding 3D printing experiments. P.Z., V.L., and N.H. gratefully acknowledge the support of the King Abdullah University of Science and Technology (KAUST)

    The effect of titanium dioxide surface modification on the dispersion, morphology, and mechanical properties of recycled PP/PET/TiO2 PBNANOs

    Get PDF
    Titanium dioxide (TiO2) nanoparticles have recently appeared in PET waste because of the introduction of opaque PET bottles. We prepare polymer blend nanocomposites (PBNANOs) by adding hydrophilic (hphi), hydrophobic (hpho), and hydrophobically modified (hphoM) titanium dioxide (TiO2) nanoparticles to 80rPP/20rPET recycled blends. Contact angle measurements show that the degree of hydrophilicity of TiO2 decreases in the order hphi > hpho > hphoM. A reduction of rPET droplet size occurs with the addition of TiO2 nanoparticles. The hydrophilic/hydrophobic balance controls the nanoparticles location. Transmission electron microscopy (TEM_ shows that hphi TiO2 preferentially locates inside the PET droplets and hpho at both the interface and PP matrix. HphoM also locates within the PP matrix and at the interface, but large loadings (12%) can completely cover the surfaces of the droplets forming a physical barrier that avoids coalescence, leading to the formation of smaller droplets. A good correlation is found between the crystallization rate of PET (determined by DSC) and nanoparticles location, where hphi TiO2 induces the highest PET crystallization rate. PET lamellar morphology (revealed by TEM) is also dependent on particle location. The mechanical behavior improves in the elastic regime with TiO2 addition, but the plastic deformation of the material is limited and strongly depends on the type of TiO2 employed.Peer Reviewe
    corecore