36 research outputs found

    Small RNAs, DNA methylation and transposable elements in wheat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 80% of the wheat genome is composed of transposable elements (TEs). Since active TEs can move to different locations and potentially impose a significant mutational load, their expression is suppressed in the genome via small non-coding RNAs (sRNAs). sRNAs guide silencing of TEs at the transcriptional (mainly 24-nt sRNAs) and post-transcriptional (mainly 21-nt sRNAs) levels. In this study, we report the distribution of these two types of sRNAs among the different classes of wheat TEs, the regions targeted within the TEs, and their impact on the methylation patterns of the targeted regions.</p> <p>Results</p> <p>We constructed an sRNA library from hexaploid wheat and developed a database that included our library and three other publicly available sRNA libraries from wheat. For five completely-sequenced wheat BAC contigs, most perfectly matching sRNAs represented TE sequences, suggesting that a large fraction of the wheat sRNAs originated from TEs. An analysis of all wheat TEs present in the <it>Triticeae </it>Repeat Sequence database showed that sRNA abundance was correlated with the estimated number of TEs within each class. Most of the sRNAs perfectly matching miniature inverted repeat transposable elements (<it>MITEs</it>) belonged to the 21-nt class and were mainly targeted to the terminal inverted repeats (TIRs). In contrast, most of the sRNAs matching class I and class II TEs belonged to the 24-nt class and were mainly targeted to the long terminal repeats (LTRs) in the class I TEs and to the terminal repeats in <it>CACTA </it>transposons. An analysis of the mutation frequency in potentially methylated sites revealed a three-fold increase in TE mutation frequency relative to intron and untranslated genic regions. This increase is consistent with wheat TEs being preferentially methylated, likely by sRNA targeting.</p> <p>Conclusions</p> <p>Our study examines the wheat epigenome in relation to known TEs. sRNA-directed transcriptional and post-transcriptional silencing plays important roles in the short-term suppression of TEs in the wheat genome, whereas DNA methylation and increased mutation rates may provide a long-term mechanism to inactivate TEs.</p

    Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts

    Get PDF
    BACKGROUND: Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. RESULTS: Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3–79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. CONCLUSIONS: This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in subsequent breeding of agronomically adapted types, including cultivar development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-945) contains supplementary material, which is available to authorized users

    Root transcriptome of the Pachycereus pringlei, a Sonoran Desert cactus with determinate growth of the primary root

    No full text
    <p>Poster presented at the Plant and Animal Genome XXIII (Jan 10 - Jan 14; 2015) in San Diego, CA.</p> <p> </p> <p>Here we present the preliminary results we have obtained from the study of the root apical exhaustion in <em>Pachycereus pringlei</em> (Cactaceae) endemic from the Sonoran Desert.</p

    2008, Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years, Mol

    No full text
    Of the approximately 250,000 species of flowering plants, nearly one in ten are members of the Compositae (Asteraceae), a diverse family found in almost every habitat on all continents except Antarctica. With an origin in the mid Eocene, the Compositae is also a relatively young family with remarkable diversifications during the last 40 My. Previous cytologic and systematic investigations suggested that paleopolyploidy may have occurred in at least one Compositae lineage, but a recent analysis of genomic data was equivocal. We tested for evidence of paleopolyploidy in the evolutionary history of the family using recently available expressed sequence tag (EST) data from the Compositae Genome Project. Combined with data available on GenBank, we analyzed nearly 1 million ESTs from 18 species representing seven genera and four tribes. Our analyses revealed at least three ancient whole-genome duplications in the Compositae-a paleopolyploidization shared by all analyzed taxa and placed near the origin of the family just prior to the rapid radiation of its tribes and independent genome duplications near the base of the tribes Mutisieae and Heliantheae. These results are consistent with previous research implicating paleopolyploidy in the evolution and diversification of the Heliantheae. Further, we observed parallel retention of duplicate genes from the basal Compositae genome duplication across all tribes, despite divergence times of 33-38 My among these lineages. This pattern of retention was also repeated for the paleologs from the Heliantheae duplication. Intriguingly, the categories of genes retained in duplicate were substantially different from those in Arabidopsis. In particular, we found that genes annotated to structural components or cellular organization Gene Ontology categories were significantly enriched among paleologs, whereas genes associated with transcription and other regulatory functions were significantly underrepresented. Our results suggest that paleopolyploidy can yield strikingly consistent signatures of gene retention in plant genomes despite extensive lineage radiations and recurrent genome duplications but that these patterns vary substantially among higher taxonomic categories

    Determinate primary root growth as an adaptation to aridity in Cactaceae: towards evolution and genetic control of the trait

    No full text
    Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses.Fil: Shishkova, Svetlana. Universidad Nacional Autónoma de México; MéxicoFil: Las Peñas, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Napsucialy Mendivil, Selene. Universidad Nacional Autónoma de México; MéxicoFil: Matvienko, Marta. University of California; Estados UnidosFil: Kozik, Alex. University of California; Estados UnidosFil: Montiel, Jesús. Universidad Nacional Autónoma de México; MéxicoFil: Patiño, Anallely. Universidad Nacional Autónoma de México; MéxicoFil: Dubrovsky, Joseph. Universidad Nacional Autónoma de México; Méxic
    corecore