1,791 research outputs found

    Digital binary phase-shift keyed signal detector

    Get PDF
    We have developed the effective algorithm for detecting digital binary phase-shift keyed signals. This algorithm requires a small number of arithmetic operations over the signal period. It can be relatively easy implemented based on the modern programmable logic devices. It also provides high interference immunity by identifying signal presence when signal-to-noise ratio is much less that its working value in the receiving path. The introduced detector has intrinsic frequency selectivity and allows us to form the estimate of the noise level to realize the adaptive determination of decision threshold. In order to get confirmation of the detector operability and performance, we suggest the expressions for false alarm and missing probabilities. In addition, we have examine, both theoretically and experimentally, the influence of the detector parameters on its characteristics

    Digital demodulator of the quadrature amplitude modulation signals

    Get PDF
    In this paper, the digital algorithm and the device for the demodulation of the quadrature amplitude modulation signals are considered. The fundamental advantages of our approach are simple hardware implementation, minimal number of arithmetic operations required over the signal period as well as the potential interference immunity in the presence of Gaussian noise. The expressions have been found for the error probability and their inaccuracy has been estimated. By means of the statistical simulation methods, the practical interference immunity of the introduced demodulator, together with the influence of phase locking errors have been tested. The introduced demodulator can be implemented either as a device independent from the programmable logic devices, or as an installation unit of the receiver equipment

    Effect of the Tunneling Conductance on the Coulomb Staircase

    Full text link
    Quantum fluctuations of the charge in the single electron box are investigated. The rounding of the Coulomb staircase caused by virtual electron tunneling is determined by perturbation theory up to third order in the tunneling conductance and compared with precise Monte Carlo data computed with a new algorithm. The remarkable agreement for large conductance indicates that presently available experimental data on Coulomb charging effects in metallic nanostructures can be well explained by finite order perturbative results.Comment: 4 pages, 5 figure

    Supersymmetry approach to nuclear-spin-polarization-induced quantum dot structure calculations

    Full text link
    In nuclear-spin-polarization-induced quantum dots the electrons are confined through local nuclear spin polarization. The model electron confinement potential is time-dependent due to the nuclear spin diffusion and relaxation processes. It can be well-approximated by a Gaussian curve which is not an exactly solvable potential. We demonstrate that it can also be approximated by multisoliton potentials for the zero value of the angular momentum and by their singular analogues for other values of momentum without any loss of calculational accuracy. We obtain these potentials by supersymmetric (or equivalently Darboux) transformations from the zero potential. The main advantage of such potentials is that they are exactly solvable. Time-dependence of the nuclear-spin-polarization-induced quantum dot energy levels is found.Comment: Physica E (in press) (2005

    Darboux transformations of coherent states of the time-dependent singular oscillator

    Full text link
    Darboux transformation of both Barut-Girardello and Perelomov coherent states for the time-dependent singular oscillator is studied. In both cases the measure that realizes the resolution of the identity operator in terms of coherent states is found and corresponding holomorphic representation is constructed. For the particular case of a free particle moving with a fixed value of the angular momentum equal to two it is shown that Barut-Giriardello coherent states are more localized at the initial time moment while the Perelomov coherent states are more stable with respect to time evolution. It is also illustrated that Darboux transformation may keep unchanged this different time behavior.Comment: 13 page

    Feshbach projection-operator formalism to resonance scattering on Bargmann-type potentials

    Full text link
    The projection-operator formalism of Feshbach is applied to resonance scattering in a single-channel case. The method is based on the division of the full function space into two segments, internal (localized) and external (infinitely extended). The spectroscopic information on the resonances is obtained from the non-Hermitian effective Hamilton operator HeffH_{\rm eff} appearing in the internal part due to the coupling to the external part. As well known, additional so-called cut-off poles of the SS-matrix appear, generally, due to the truncation of the potential. We study the question of spurious SS matrix poles in the framework of the Feshbach formalism. The numerical analysis is performed for exactly solvable potentials with a finite number of resonance states. These potentials represent a generalization of Bargmann-type potentials to accept resonance states. Our calculations demonstrate that the poles of the SS matrix obtained by using the Feshbach projection-operator formalism coincide with both the complex energies of the physical resonances and the cut-off poles of the SS-matrix.Comment: 12 pages, 9 figure

    Dilepton production in proton-proton collisions at BEVALAC energies

    Full text link
    The dilepton production in elementary ppe+eX{pp\to e^{+}e^{-}X} reactions at BEVALAC energies Tlab=1÷5T_{lab}=1\div 5 GeV is investigated. The calculations include direct e+e{e^{+}e^{-}} decays of the vector mesons ρ0\rho ^{0}, ω\omega , and ϕ\phi , Dalitz decays of the π0\pi ^{0}-, η\eta -, % \rho -, ω\omega -, and ϕ\phi -mesons, and of the baryon resonances % \Delta (1232),N(1520), ...... . The subthreshold vector meson production cross sections in pppp collisions are treated in a way sufficient to avoid double counting with the inclusive vector meson production. The vector meson dominance model for the transition form factors of the resonance Dalitz decays Re+eNR\to e^{+}e^{-}N is used in an extended form to ensure correct asymptotics which are in agreement with the quark counting rules. Such a modification gives an unified and consistent description of both RNγR\to N\gamma radiative decays and RNρ(ω)R\to N\rho (\omega) meson decays. The effect of multiple pion production on the experimental efficiency for the detection of the dilepton pairs is studied. We find the dilepton yield in reasonable agreement with the experimental data for the set of intermediate energies whereas at the highest energy Tlab=4.88T_{lab}=4.88 GeV the number of dilepton pairs is likely to be overestimated experimentally in the mass range M=300÷700M=300\div 700 MeV.Comment: 25 pages (IOP style), 5 figures, revised manuscript accepted for publication in JP

    Nonlocal supersymmetric deformations of periodic potentials

    Full text link
    Irreducible second-order Darboux transformations are applied to the periodic Schrodinger's operators. It is shown that for the pairs of factorization energies inside of the same forbidden band they can create new non-singular potentials with periodicity defects and bound states embedded into the spectral gaps. The method is applied to the Lame and periodic piece-wise transparent potentials. An interesting phenomenon of translational Darboux invariance reveals nonlocal aspects of the supersymmetric deformations.Comment: 15 pages, latex, 9 postscript figure
    corecore