4,826 research outputs found

    The WIC Advisor: A Case Study in Medical Expert System Development

    Get PDF
    This project provides a good case study of expert system development with untrained experts over a short period of time. We describe the development of a working medical screening and diagnosis expert system for use at the Women, Infants and Children (WIC) clinics in Madison County, Illinois. The system was designed and implemented over the period of four months. A large number of knowledge acquisition techniques were employed, some of them customized in ways that greatly increased their effectiveness. This paper explores the development of THE WIC Advisor, from problem definition through expert system delivery. The knowledge acquisition methods used in creating The WIC Advisor comprise a beneficial case study of several traditional techniques. Protocol analysis, question/answer listing, knowledge acquisition room selection, prototyping, focused interviewing, multiple expert selection, direct questioning, audio-tape transcription, diving the domain, role-playing and teach back were employed [4,5]. Important factors in the success of this expert system were the selection of a limited diagnostic domain, the choice of multiple experts who worked well together, and our continuing efforts to make the experts feel comfortable with the technology and the process. The major benefits of the system include assisting clients between clinic visits, cataloging basic medical data, and providing consistent and verifiable informatio

    Non-Newtonian fluid flow through three-dimensional disordered porous media

    Full text link
    We investigate the flow of various non-Newtonian fluids through three-dimensional disordered porous media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified permeability-like index and Reynolds number, can be successfully described by a single (universal) curve over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that the interplay of ({\it i}) the disordered geometry of the pore space, ({\it ii}) the fluid rheological properties, and ({\it iii}) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic hydraulic conductance of the system at intermediate Reynolds conditions. This anomalous condition of ``enhanced transport'' represents a novel feature for flow in porous materials.Comment: 5 pages, 5 figures. This article appears also in Physical Review Letters 103 194502 (2009

    Who knows best? A Q methodology study to explore perspectives of professional stakeholders and community participants on health in low-income communities

    Get PDF
    Abstract Background Health inequalities in the UK have proved to be stubborn, and health gaps between best and worst-off are widening. While there is growing understanding of how the main causes of poor health are perceived among different stakeholders, similar insight is lacking regarding what solutions should be prioritised. Furthermore, we do not know the relationship between perceived causes and solutions to health inequalities, whether there is agreement between professional stakeholders and people living in low-income communities or agreement within these groups. Methods Q methodology was used to identify and describe the shared perspectives (‘subjectivities’) that exist on i) why health is worse in low-income communities (‘Causes’) and ii) the ways that health could be improved in these same communities (‘Solutions’). Purposively selected individuals (n = 53) from low-income communities (n = 25) and professional stakeholder groups (n = 28) ranked ordered sets of statements – 34 ‘Causes’ and 39 ‘Solutions’ – onto quasi-normal shaped grids according to their point of view. Factor analysis was used to identify shared points of view. ‘Causes’ and ‘Solutions’ were analysed independently, before examining correlations between perspectives on causes and perspectives on solutions. Results Analysis produced three factor solutions for both the ‘Causes’ and ‘Solutions’. Broadly summarised these accounts for ‘Causes’ are: i) ‘Unfair Society’, ii) ‘Dependent, workless and lazy’, iii) ‘Intergenerational hardships’ and for ‘Solutions’: i) ‘Empower communities’, ii) ‘Paternalism’, iii) ‘Redistribution’. No professionals defined (i.e. had a significant association with one factor only) the ‘Causes’ factor ‘Dependent, workless and lazy’ and the ‘Solutions’ factor ‘Paternalism’. No community participants defined the ‘Solutions’ factor ‘Redistribution’. The direction of correlations between the two sets of factor solutions – ‘Causes’ and ‘Solutions’ – appear to be intuitive, given the accounts identified. Conclusions Despite the plurality of views there was broad agreement across accounts about issues relating to money. This is important as it points a way forward for tackling health inequalities, highlighting areas for policy and future research to focus on

    Spin-dependent electrical transport in ion-beam sputter deposited Fe-Cr multilayers

    Full text link
    The temperature dependence of the electrical resistivity and magnetoresistance of Xe-ion beam sputtered Fe-Cr multilayers has been investigated. The electrical resistivity between 5 and 300 K in the fully ferromagnetic state, obtained by applying a field beyond the saturation field (H_sat) necessary for the antiferromagnetic(AF)-ferromagnetic(FM) field-induced transition, shows evidence of spin-disorder resistivity as in crystalline Fe and an s-d scattering contribution (as in 3d metals and alloys). The sublattice magnetization m(T) in these multilayers has been calculated in terms of the planar and interlayer exchange energies. The additional spin-dependent scattering \Delta \rho (T) = \rho(T,H=0)_AF - \rho(T,H=H_sat)_FM in the AF state over a wide range of temperature is found to be proportional to the sublattice magnetization, both \Delta \rho(T) and m(T) reducing along with the antiferromagnetic fraction. At intermediate fields, the spin-dependent part of the electrical resistivity (\rho_s (T)) fits well to the power law \rho_s (T) = b - cT^\alpha where c is a constant and b and \alpha are functions of H. At low fields \alpha \approx 2 and the intercept b decreases with H much the same way as the decrease of \Delta \rho (T) with T. A phase diagram (T vs. H_sat) is obtained for the field- induced AF to FM transition. Comparisons are made between the present investigation and similar studies using dc magnetron sputtered and molecular beam epitaxy (MBE) grown Fe-Cr multilayers.Comment: 8 pages, 10 figures, to appear in Phys. Rev.

    Publication and patent analysis of European researchers in the field of production technology and manufacturing systems

    Get PDF
    This paper develops a structured comparison among a sample of European researchers in the field of Production Technology and Manufacturing Systems, on the basis of scientific publications and patents. Researchers are evaluated and compared by a variegated set of indicators concerning (1) the output of individual researchers and (2) that of groups of researchers from the same country. While not claiming to be exhaustive, the results of this preliminary study provide a rough indication of the publishing and patenting activity of researchers in the field of interest, identifying (dis)similarities between different countries. Of particular interest is a proposal for aggregating analysis results by means of maps based on publication and patent indicators. A large amount of empirical data are presented and discusse

    Chiral Multiplets of Heavy-Light Mesons

    Full text link
    The recent discovery of a narrow resonance in D_s+pi^0 by the BABAR collaboration is consistent with the interpretation of a heavy J^P(0+,1+) spin multiplet. This system is the parity partner of the groundstate (0-,1-) multiplet, which we argue is required in the implementation of SU(3)_L x SU(3)_R chiral symmetry in heavy-light meson systems. The (0+,1+)->(0-,1-)+pi transition couplings satisfy a Goldberger-Treiman relation, g_pi = Delta(M)/f_pi, where Delta(M) is the mass gap. The BABAR resonance fits the 0+ state, with a kinematically blocked principal decay mode to D+K. The allowed D_s+pi, D_s+2pi and electromagnetic transitions are computed from the full chiral theory and found to be suppressed, consistent with the narrowness of the state. This state establishes the chiral mass difference for all such heavy-quark chiral multiplets, and precise predictions exist for the analogous B_s and strange doubly-heavy baryon states.Comment: 10 pages; minor editorial revisions; recomputed M1 transitio

    "After my husband's circumcision, I know that I am safe from diseases": Women's Attitudes and Risk Perceptions Towards Male Circumcision in Iringa, Tanzania.

    Get PDF
    While male circumcision reduces the risk of female-to-male HIV transmission and certain sexually transmitted infections (STIs), there is little evidence that circumcision provides women with direct protection against HIV. This study used qualitative methods to assess women's perceptions of male circumcision in Iringa, Tanzania. Women in this study had strong preferences for circumcised men because of the low risk perception of HIV with circumcised men, social norms favoring circumcised men, and perceived increased sexual desirability of circumcised men. The health benefits of male circumcision were generally overstated; many respondents falsely believed that women are also directly protected against HIV and that the risk of all STIs is greatly reduced or eliminated in circumcised men. Efforts to engage women about the risks and limitations of male circumcision, in addition to the benefits, should be expanded so that women can accurately assess their risk of HIV or STIs during sexual intercourse with circumcised men

    Circulating Brain-Derived Neurotrophic Factor and Indices of Metabolic and Cardiovascular Health: Data from the Baltimore Longitudinal Study of Aging

    Get PDF
    Besides its well-established role in nerve cell survival and adaptive plasticity, brain-derived neurotrophic factor (BDNF) is also involved in energy homeostasis and cardiovascular regulation. Although BDNF is present in the systemic circulation, it is unknown whether plasma BDNF correlates with circulating markers of dysregulated metabolism and an adverse cardiovascular profile.To determine whether circulating BDNF correlates with indices of metabolic and cardiovascular health, we measured plasma BDNF levels in 496 middle-age and elderly subjects (mean age approximately 70), in the Baltimore Longitudinal Study of Aging. Linear regression analysis revealed that plasma BDNF is associated with risk factors for cardiovascular disease and metabolic syndrome, regardless of age. In females, BDNF was positively correlated with BMI, fat mass, diastolic blood pressure, total cholesterol, and LDL-cholesterol, and inversely correlated with folate. In males, BDNF was positively correlated with diastolic blood pressure, triglycerides, free thiiodo-thyronine (FT3), and bioavailable testosterone, and inversely correlated with sex-hormone binding globulin, and adiponectin.Plasma BDNF significantly correlates with multiple risk factors for metabolic syndrome and cardiovascular dysfunction. Whether BDNF contributes to the pathogenesis of these disorders or functions in adaptive responses to cellular stress (as occurs in the brain) remains to be determined

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013
    corecore