1,452 research outputs found

    OVCS Newsletter April 2015

    Get PDF

    Time-lapse airborne EM surveys across a municipal landfill

    Get PDF
    In contrast to the majority of historical landfills, modern municipal landfills are highly engineered and follow a contain and seal strategy of leachate management. The purpose of the management system is to render the waste products inert and environmentally safe. A requirement for monitoring and assessment of the installation on the scale of decades is a consequence of the strategy. Data obtained from two repeated fixed-wing airborne electromagnetic surveys across an active, municipal solid waste landfill are considered here. The time interval between the surveys is 4years . In theory such data may be used to both test the isolation performance of the installation and to monitor mass (leachate) transport behaviour within the landfill structure. Single frequency (3.1kHz) data obtained at a similar density (100m flight line spacing) over the 4year span are presented and compared. These data have an expected mean depth of investigation of about 15m within the landfill. Half-space conductivity models are determined from the survey data by an inversion procedure. Conductivities within the landfill are observed to be three orders of magnitude above background. From the initial survey data, a specific distribution of high conductivity material can be identified in three of the landfill cells (peak values of 170mSāˆ•m ). Four years later, a considerable redistribution of material is apparent in the results obtained across two of the cells (peak values of 317mSāˆ•m ). A third cell shows no change. A subtraction of the two time-lapse conductivity models allows the dynamic components of the conductivity distribution (all increases with time) to be mapped within individual cells. All larger conductivity increases (>20mSāˆ•m) are confined to the operational landfill

    Graphs, Matrices, and the GraphBLAS: Seven Good Reasons

    Get PDF
    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istc- bigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.Comment: 10 pages; International Conference on Computational Science workshop on the Applications of Matrix Computational Methods in the Analysis of Modern Dat

    Factors Governing Risk of Cougar Attacks on Humans

    Get PDF
    Since the 1980s wildlife managers in the United States and Canada have expressed increasing concern about the physical threat posed by cougars (Puma concolor) to humans. We developed a conceptual framework and analyzed 386 humanā€“ cougar encounters (29 fatal attacks, 171 instances of nonfatal contact, and 186 close-threatening encounters) to provide information relevant to public safety. We conceived of human injury and death as the outcome of 4 transitions affected by different suites of factors: (1) a human encountering a cougar: (2) given an encounter, odds that the cougar would be aggressive; (3) given aggression, odds that the cougar would attack; and (4) given an attack, odds that the human would die. We developed multivariable logistic regression models to explain variation in odds at transitions three and four using variables pertaining to characteristics of involved people and cougars. Young (ā‰¤2.5 years) or unhealthy (by weight, condition, or disease) cougars were more likely than any others to be involved in close (typically m) encounters that threatened the involved person. Of cougars in close encounters, females were more likely than males to attack, and of attacking animals, adults were more likely than juveniles to kill the victim (32% versus 9% fatality, respectively). During close encounters, victims who used a weapon killed the involved cougar in 82% of cases. Other mitigating behaviors (e.g., yelling, backing away, throwing objects, increasing stature) also substantially lessened odds of attack. People who were moving quickly or erratically when an encounter happened (running, playing, skiing, snowshoeing, biking, ATV-riding) were more likely to be attacked and killed compared to people who were less active (25% versus 8% fatality). Children (ā‰¤10 years) were more likely than single adults to be attacked, but intervention by people of any age reduced odds of a childā€™s death by 4.6Ɨ. Overall, cougar attacks on people in Canada and the United States were rare (currently 4 to 6/year) compared to attacks by large felids and wolves (Canis lupus) in Africa and Asia (hundreds to thousands/year)

    After the International Bill of Human Rights (IBHR): Introduction to Special Issue on Human Rights and Professional Communication

    Get PDF
    If published work is at all a reliable indicator, the issue of human rights has not yet emerged as a consistent thread in professional communication scholarship: but over the past decade the literature has addressed themes related to the larger issue of human rights. Such themes include, among others, social justice and globalization; critical responses to development and globalization; critical race theory and whiteness studies; and discourses of diverse publics and indigenous knowledges (Agboka, 2013a, 2013b; Bowdon, 2004; Broadfoot & Munshi, 2007; Haas, 2012; Johnson, Pimentel, & Pimentel, 2008; Lipus, 2006; Mattson, 2013; Nugent, 2013; Savage & Mattson, 2011; Savage & Matveeva, 2011; Smith, 2012; Surma, 2005; Voss & Flammia, 2007; Walton, 2013; Williams, 2010; Williams & Pimentel, 2012); (T. Herrington, 2011; T. K. Herrington, 2001). Williams and Pimentel noted a ā€œreticence to discuss such topics in technical communication research and literatureā€ (272). And yet, we cannot pretend that human rights has no significance for scholarship, teaching, and practice of professional communication, especially where it concerns developing nations and marginalized populations

    Systemic Acrolein Elevations in Mice With Experimental Autoimmune Encephalomyelitis and Patients With Multiple Sclerosis

    Get PDF
    Demyelination and axonal injury are the key pathological processes in multiple sclerosis (MS), driven by inflammation and oxidative stress. Acrolein, a byproduct and instigator of oxidative stress, has been demonstrated as a neurotoxin in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, due to the invasive nature of acrolein detection using immunoblotting techniques, the investigation of acrolein in MS has been limited to animal models. Recently, detection of a specific acrolein-glutathione metabolite, 3-HPMA, has been demonstrated in urine, enabling the noninvasive quantification of acrolein for the first time in humans with neurological disorders. In this study, we have demonstrated similar elevated levels of acrolein in both urine (3-HPMA) and in spinal cord tissue (acrolein-lysine adduct) in mice with EAE, which can be reduced through systemic application of acrolein scavenger hydralazine. Furthermore, using this approach we have demonstrated an increase of 3-HPMA in both the urine and serum of MS patients relative to controls. It is expected that this noninvasive acrolein detection could facilitate the investigation of the role of acrolein in the pathology of MS in human. It may also be used to monitor putative therapies aimed at suppressing acrolein levels, reducing severity of symptoms, and slowing progression as previously demonstrated in animal studies

    XRCC1 protects against the lethality of induced oxidative DNA damage in nondividing neural cells

    Get PDF
    XRCC1 is a critical scaffold protein that orchestrates efficient single-strand break repair (SSBR). Recent data has found an association of XRCC1 with proteins causally linked to human spinocerebellar ataxiasā€”aprataxin and tyrosyl-DNA phosphodiesterase 1ā€”implicating SSBR in protection against neuronal cell loss and neurodegenerative disease. We demonstrate herein that shRNA lentiviral-mediated XRCC1 knockdown in human SH-SY5Y neuroblastoma cells results in a largely selective increase in sensitivity of the nondividing (i.e. terminally differentiated) cell population to the redox-cycling agents, menadione and paraquat; this reduced survival was accompanied by an accumulation of DNA strand breaks. Using hypoxanthineā€“xanthine oxidase as the oxidizing method, XRCC1 deficiency affected both dividing and nondividing SH-SY5Y cells, with a greater effect on survival seen in the former case, suggesting that the spectrum of oxidative DNA damage created dictates the specific contribution of XRCC1 to cellular resistance. Primary XRCC1 heterozygous mouse cerebellar granule cells exhibit increased strand break accumulation and reduced survival due to increased apoptosis following menadione treatment. Moreover, knockdown of XRCC1 in primary human fetal brain neurons leads to enhanced sensitivity to menadione, as indicated by increased levels of DNA strand breaks relative to control cells. The cumulative results implicate XRCC1, and more broadly SSBR, in the protection of nondividing neuronal cells from the genotoxic consequences of oxidative stress

    Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    Get PDF
    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haploinsufficiency exhibit elevated resting heart rate, and infusion of BDNF intracerebroventricularly reduces heart rate in both wild-type and BDNF+/āˆ’ mice. The atropine-induced elevation of heart rate is diminished in BDNF+/āˆ’ mice and is restored by BDNF infusion, whereas the atenolol-induced decrease in heart rate is unaffected by BDNF levels, suggesting that BDNF signaling enhances parasympathetic tone which is diminished with BDNF haploinsufficiency. Whole-cell recordings from pre-motor cholinergic cardioinhibitory vagal neurons in the nucleus ambiguus indicate that BDNF haploinsufficiency reduces cardioinhibitory vagal neuron activity by increased inhibitory GABAergic and diminished excitatory glutamatergic neurotransmission to these neurons. Our findings reveal a previously unknown role for BDNF in the control of heart rate by a mechanism involving increased activation of brainstem cholinergic parasympathetic neurons Mice with reduced BDNF levels exhibit elevated heart rate, and infusion of BDNF into the brain normalizes heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Recordings from pre-motor cholinergic cardioinhibitory vagal neurons (CVNs) in the nucleus ambiguus indicate that BDNF increases CVN activity by increasing excitatory glutamatergic and decreasing inhibitory GABAergic neurotransmission to these neurons. Perhaps factors that increase parasympathetic tone (e.g., exercise) reduce resting heart rate, in part, by a BDNF-mediated mechanism
    • ā€¦
    corecore