956 research outputs found

    Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery

    Get PDF
    A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 micron. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed

    MODIS 3km Aerosol Product: Algorithm and Global Perspective

    Get PDF
    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community

    Mirnov coil data analysis for tokamak ADITYA

    Get PDF
    The spatial and temporal structures of magnetic signal in the tokamak ADITYA is analysed using recently developed singular value decomposition (SVD) technique. The analysis technique is first tested with simulated data and then applied to the ADITYA Mirnov coil data to determine the structure of current peturbation as the discharge progresses. It is observed that during the current rise phase, current perturbation undergoes transition from m=5 poloidal structure to m=4 and then to m=3. At the time of current termination, m=2 perturbation is observed. It is observed that the mode frequency remains nearly constant (≈10 kHz) when poloidal mode structure changes from m=4 to m=2. This may be either an indication of mode coupling or a consequences of changes in the plasma electron temperature and density scale length

    Exploring Aerosols near Clouds with High-Spatial-Resolution Aircraft Remote Sensing During SEAC4RS

    Get PDF
    Since aerosols are important to our climate system, we seek to observe the variability of aerosol properties within cloud systems. When applied to the satelliteborne Moderateresolution Imaging Spectroradiometer (MODIS), the Dark Target retrieval algorithm provides global aerosol optical depth (AOD; at 0.55 m) in cloudfree scenes. Since MODIS' resolution (500m pixels, 3 or 10km product) is too coarse for studying nearcloud aerosol, we ported the Dark Target algorithm to the highresolution (~50m pixels) enhancedMODIS Airborne Simulator (eMAS), which flew on the highaltitude ER2 during the Studies of Emissions, Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys Airborne Science Campaign over the United States in 2013. We find that even with aggressive cloud screening, the ~0.5km eMAS retrievals show enhanced AOD, especially within 6 km of a detected cloud. To determine the cause of the enhanced AOD, we analyze additional eMAS products (cloud retrievals and degradedresolution AOD), coregistered Cloud Physics Lidar profiles, MODIS aerosol retrievals, and groundbased Aerosol Robotic Network observations. We also define spatial metrics to indicate local cloud distributions near each retrieval and then separate into nearcloud and farfromcloud environments. The comparisons show that low cloud masking is robust, and unscreened thin cirrus would have only a small impact on retrieved AOD. Some of the enhancement is consistent with clearcloud transition zone microphysics such as aerosol swelling. However, 3D radiation interaction between clouds and the surrounding clear air appears to be the primary cause of the high AOD near clouds

    Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Get PDF
    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region

    The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease

    Get PDF
    Lafora disease (LD) is a progressive myoclonic epilepsy resulting in severe neurodegeneration followed by death. A hallmark of LD is the accumulation of insoluble polyglucosans called Lafora bodies (LBs). LD is caused by mutations in the gene encoding the phosphatase laforin, which reportedly exists solely in vertebrates. We utilized a bioinformatics screen to identify laforin orthologues in five protists. These protists evolved from a progenitor red alga and synthesize an insoluble carbohydrate whose composition closely resembles LBs. Furthermore, we show that the kingdom Plantae, which lacks laforin, possesses a protein with laforin-like properties called starch excess 4 (SEX4). Mutations in the Arabidopsis thaliana SEX4 gene results in a starch excess phenotype reminiscent of LD. We demonstrate that Homo sapiens laforin complements the sex4 phenotype and propose that laforin and SEX4 are functional equivalents. Finally, we show that laforins and SEX4 dephosphorylate a complex carbohydrate and form the only family of phosphatases with this activity. These results provide a molecular explanation for the etiology of LD

    MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region

    Get PDF
    MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution

    Exploring systematic offsets between aerosol products from the two MODIS sensors

    Get PDF
    Long-term measurements of global aerosol loading and optical properties are essential for assessing climate-related questions. Using observations of spectral reflectance and radiance, the dark-target (DT) aerosol retrieval algorithm is applied to Moderate Resolution Imaging Spectroradiometer sensors on both Terra (MODIS-T) and Aqua (MODIS-A) satellites, deriving products (known as MOD04 and MYD04, respectively) of global aerosol optical depth (AOD at 0.55&thinsp;µm) over both land and ocean, and an Ångström exponent (AE derived from 0.55 and 0.86&thinsp;µm) over ocean. Here, we analyze the overlapping time series (since mid-2002) of the Collection 6 (C6) aerosol products. Global monthly mean AOD from MOD04 (Terra with morning overpass) is consistently higher than MYD04 (Aqua with afternoon overpass) by ∼&thinsp;13&thinsp;% (∼&thinsp;0.02 over land and ∼&thinsp;0.015 over ocean), and this offset (MOD04 – MYD04) has seasonal as well as long-term variability. Focusing on 2008 and deriving yearly gridded mean AOD and AE, we find that, over ocean, the MOD04 (morning) AOD is higher and the AE is lower. Over land, there is more variability, but only biomass-burning regions tend to have AOD lower for MOD04. Using simulated aerosol fields from the Goddard Earth Observing System (GEOS-5) Earth system model and sampling separately (in time and space) along each MODIS-observed swath during 2008, the magnitudes of morning versus afternoon offsets of AOD and AE are smaller than those in the C6 products. Since the differences are not easily attributed to either aerosol diurnal cycles or sampling issues, we test additional corrections to the input reflectance data. The first, known as C6+, corrects for long-term changes to each sensor's polarization sensitivity and the response versus the scan angle and to cross-calibration from MODIS-T to MODIS-A. A second convolves the detrending and cross-calibration into scaling factors. Each method was applied upstream of the aerosol retrieval using 2008 data. While both methods reduced the overall AOD offset over land from 0.02 to 0.01, neither significantly reduced the AOD offset over ocean. The overall negative AE offset was reduced. A collection (C6.1) of all MODIS Atmosphere products was released, but we expect that the C6.1 aerosol products will maintain similar overall AOD and AE offsets. We conclude that (a) users should not interpret global differences between Terra and Aqua aerosol products as representing a true diurnal signal in the aerosol. (b) Because the MODIS-A product appears to have an overall smaller bias compared to ground-truth data, it may be more suitable for some applications. However (c), since the AOD offset is only ∼&thinsp;0.02 and within the noise level for single retrievals, both MODIS products may be adequate for most applications.</p

    Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions

    Get PDF
    SummaryMany bacterial pathogens use the type III secretion system to inject “effector” proteins into host cells. Here, we report the identification of a 24 member effector protein family found in pathogens including Salmonella, Shigella, and enteropathogenic E. coli. Members of this family subvert host cell function by mimicking the signaling properties of Ras-like GTPases. The effector IpgB2 stimulates cellular responses analogous to GTP-active RhoA, whereas IpgB1 and Map function as the active forms of Rac1 and Cdc42, respectively. These effectors do not bind guanine nucleotides or have sequences corresponding the conserved GTPase domain, suggesting that they are functional but not structural mimics. However, several of these effectors harbor intracellular targeting sequences that contribute to their signaling specificities. The activities of IpgB2, IpgB1, and Map are dependent on an invariant WxxxE motif found in numerous effectors leading to the speculation that they all function by a similar molecular mechanism

    Characterizing the 2015 Indonesia fire event using modified MODIS aerosol retrievals

    Get PDF
    The Indonesian fire and smoke event of 2015 was an extreme episode that affected public health and caused severe economic and environmental damage. The MODIS Dark Target (DT) aerosol algorithm, developed for global applications, significantly underestimated regional aerosol optical depth (AOD) during this episode. The larger-than-global-averaged uncertainties in the DT product over this event were due to both an overly zealous set of masks that mistook heavy smoke plumes for clouds and/or inland water, and also an aerosol model developed for generic global aerosol conditions. Using Aerosol Robotic Network (AERONET) Version 3 sky inversions of local AERONET stations, we created a specific aerosol model for the extreme event. Thus, using this new less-absorbing aerosol model, cloud masking based on results of the MODIS cloud optical properties algorithm, and relaxed thresholds on both inland water tests and upper limits of the AOD retrieval, we created a research algorithm and applied it to 80 appropriate MODIS granules during the event. Collocating and comparing with AERONET AOD shows that the research algorithm doubles the number of MODIS retrievals greater than 1.0, while also significantly improving agreement with AERONET. The final results show that the operational DT algorithm had missed approximately 0.22 of the regional mean AOD, but as much as AOD&thinsp;=&thinsp;3.0 for individual 0.5∘ grid boxes. This amount of missing AOD can skew the perception of the severity of the event, affect estimates of regional aerosol forcing, and alter aerosol modeling and forecasting that assimilate MODIS aerosol data products. These results will influence the future development of the global DT aerosol algorithm.</p
    corecore