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Abstract. The Indonesian fire and smoke event of 2015 was
an extreme episode that affected public health and caused
severe economic and environmental damage. The MODIS
Dark Target (DT) aerosol algorithm, developed for global ap-
plications, significantly underestimated regional aerosol opti-
cal depth (AOD) during this episode. The larger-than-global-
averaged uncertainties in the DT product over this event were
due to both an overly zealous set of masks that mistook heavy
smoke plumes for clouds and/or inland water, and also an
aerosol model developed for generic global aerosol condi-
tions. Using Aerosol Robotic Network (AERONET) Version
3 sky inversions of local AERONET stations, we created a
specific aerosol model for the extreme event. Thus, using
this new less-absorbing aerosol model, cloud masking based
on results of the MODIS cloud optical properties algorithm,
and relaxed thresholds on both inland water tests and up-
per limits of the AOD retrieval, we created a research algo-
rithm and applied it to 80 appropriate MODIS granules dur-
ing the event. Collocating and comparing with AERONET
AOD shows that the research algorithm doubles the num-
ber of MODIS retrievals greater than 1.0, while also sig-
nificantly improving agreement with AERONET. The final
results show that the operational DT algorithm had missed
approximately 0.22 of the regional mean AOD, but as much
as AOD =3.0 for individual 0.5° grid boxes. This amount
of missing AOD can skew the perception of the severity of
the event, affect estimates of regional aerosol forcing, and al-
ter aerosol modeling and forecasting that assimilate MODIS

aerosol data products. These results will influence the future
development of the global DT aerosol algorithm.

1 Introduction

Extreme aerosol events, as a result of severe biomass burn-
ing, have large regional and global impacts. The biomass
burning causes destruction in ecosystems, disruption to eco-
nomics, and harms public health. For example, the El Nifio-
related 2015 Indonesia fire (Field et al., 2016) event released
1750 million metric tons of carbon dioxide, which is equal
to 5.5 % of the global carbon emission from fossil fuel and
industrial processes in 2010 (Parker et al., 2016; Glauber and
Gunawan, 2016; IPCC, 2014). The 5 months of burning also
caused significant economic and environmental damage, in-
cluding USD 16.1 billion in economic losses (Glauber and
Gunawan, 2016), 2.6 million hectares of Indonesian land
burned, and destruction of fragile peatland ecosystems (Lo-
hberger et al., 2017). Studies also show that public health was
harmed via accumulated and/or transported smoke (Marlier
et al., 2015; Crippa et al., 2016). The long-term effects of the
smoke are estimated to have caused an additional 100000
mortalities across Indonesia, Malaysia, and Singapore (Ko-
plitz et al., 2016).

Due to the vast destruction and long-lasting impacts, the
research, applied science and policy communities have at-
tempted to observe, understand, simulate, and predict events
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like the Indonesian fires. Satellite aerosol products are one
important data source used by a wide range of disciplines
in general studies of fire and smoke. Examples of applica-
tions of satellite products include fire intensity estimation
(Petrenko et al., 2012), aerosol transport modeling and vis-
ibility forecasts (Collins et al., 2001; Zhang et al., 2008), air
quality prediction (Al-Saadi et al., 2005; Wang and Christo-
pher, 2003), and human health assessments (Van Donkelaar
et al., 2010; Lighty et al., 2000). Satellite aerosol products,
especially those derived from the passive sensors, have diffi-
culties retrieving aerosol signals when the smoke plumes are
very optically thick (Van Donkelaar et al., 2011; Zhang et al.,
2016; Witte et al., 2011). Very optically thick aerosol plumes,
defined as having aerosol optical depth (AOD, symbol 1)
greater than 3.0, which may have high visible reflectance
and high spatial variability near the source region, could be
misclassified as clouds or other features. By excluding these
optically thick aerosol data, this misclassification can intro-
duce a low bias in aerosol regional climatology and further
influence other studies that rely on satellite data. In partic-
ular the aerosol modeling and aerosol data assimilation ef-
forts to model and predict the consequences of these events
for air quality and visibility forecasts will be misled due to
this low bias in the “observed” quantities (Zhang et al., 2006;
Benedetti et al., 2009; Chung et al., 2010). This was indeed
the case during the Indonesian smoke event of 2015.

In this study, we focused on a domain and temporal period
defined as —10 to 10° N and 95 to 125° E from August to Oc-
tober 2015 when intense burning existed. We noted that the
operational MODerate Resolution Imaging Spectroradiome-
ter (MODIS) aerosol products had trouble capturing the com-
plete picture of aerosol loading during the 2015 Indonesia
burning event. Therefore, we developed a research algorithm
to address this problem and to bring back those missing re-
trievals. This research algorithm is based on the operational
Dark Target (DT) aerosol algorithm but modified with a new
cloud mask and a new aerosol model generated from local
AERONET inversion products. We applied the new research
algorithm and evaluate results against AERONET version 3
AOQOD. Using the newly developed research product, we inves-
tigated how our regional climatology was modified. Statisti-
cal analyses were also conducted to understand the aerosol
distribution over this event.

2 Remote sensing of aerosol and clouds over Indonesia
2.1 MODIS Dark Target aerosol algorithm

The MODIS Dark Target algorithm for retrieving aerosol
properties over land utilizes three wavelengths (0.47, 0.66,
and 2.1 ym) over dark vegetation-covered land surfaces fol-
lowing the lookup table (LUT) method (Levy et al., 2007a,
b, 2013). The algorithm applies two fundamental assump-
tions that allow constraint of surface reflectance and aerosol
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properties (aerosol model) in order to retrieve the AOD. The
first assumption concerns estimating the surface reflectance,
referring to an assumed relationship between the surface re-
flectance at 2.1 um and the surface reflectance in the visible
(Levy et al., 2007b). The second assumption concerns pre-
determining a fine-mode aerosol model prescribed for every
season and region. Prior knowledge of the aerosol model is
determined via global analyses of AERONET sky radiance
inversion products before February 2005 (Levy et al., 2007a).
Based on the reported dominant aerosol type at AERONET
sites at that time, regions seasonally dominated by “strongly
absorbing” or “nonabsorbing” aerosol types are identified
and set aside, while everywhere else is assigned the “moder-
ately absorbing” aerosol model. There were no AERONET
sites established in or near Indonesia before 2005. Thus, the
preselected aerosol model for Indonesia in the operational
DT algorithm is the moderately absorbing aerosol model
with a single scattering albedo of 0.92 (Levy et al., 2007a).

The MODIS DT algorithm first groups the input radiances
into arrays of 20 x 20 pixels at 500 m resolution, which is
nominally a 10 km box at nadir. Within this retrieval box the
algorithm proceeds with a cascade of screening procedures to
remove pixels that will violate the fundamental assumptions
about surface properties and aerosol model. These screen-
ing procedures include a cloud mask, a snow and ice filter,
an inland water test, and elimination of bright surfaces. Two
masks that are particularly relevant for our situation of thick
smoke over Indonesia are the cloud mask and inland water
test. The DT cloud screening procedure relies on tests that
compare the absolute value and the spatial variability of top-
of-atmosphere (TOA) reflectance at 0.47 um at 500 m reso-
lution with a threshold value. Pixels that are “too bright” or
“too variable” are masked as clouds. In addition, the algo-
rithm makes use of the 1.38 um TOA reflectance at 1k 'm res-
olution to identify and mask cirrus.

The inland water mask is basically the Normalized Differ-
ence Vegetation Index (NDVI), defined as Eq. (1):

NDVI = (00.87 — p0.66)/(£0.87 + £0.66)- (D

where p is the reflectance at TOA at 0.87 and 0.66 um, as
subscripted. In addition to separating vegetated and nonveg-
etated surfaces, NDVI is sensitive to a thin layer of water on
the surface, such as snow melting or swamp surfaces. NDVI
can also be used to remove pixels near cloud edges. The op-
erational DT algorithm requires NDVI > 0.1 for the retrieval
to be performed, which enables the identifications of “ideal”
dark-land targets for DT retrieval and avoids situations that
would introduce large uncertainties in the retrieval.

After the screening process has removed clouds and var-
ious other surfaces in violation of the algorithm’s assump-
tions, the retrieval returns to the remaining “good” pixels in
the 10 km retrieval box and discards the brightest 50 % and
the darkest 20 % of these qualified pixels, defined using the
reflectance at 0.66 um. If there are at least 12 pixels remain-
ing after this vigorous selection process, these remaining pix-
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els are aggregated to produce the average TOA spectral re-
flectance representative of the 10 km box. From this aggrega-
tion, the inversion is performed based on the pre-calculated
LUT. The pre-calculated LUT only extends to AOD of 5.0 (at
0.55 um). For an algorithm that aims to retrieve aerosol glob-
ally, this AOD cap is reasonable (Remer et al., 2008). The
retrieved DT AOD over land has an expected uncertainty of
£(0.05+15% AOD).

While these assumptions and screening procedures are ap-
propriate for a global, operational Collection 6 (C6) DT al-
gorithm, we have found that there are exceptional situations.
The Indonesian smoke event is one of these exceptional sit-
uations that require modification of the operational DT al-
gorithm to obtain accurate retrievals (or even to retrieve in
the first place). Without modifying the global thresholds for
masking, the missing retrievals will lead to a product with a
statistically low bias. In developing these modifications, we
will require additional information from other sensors and
algorithms to identify heavy smoke plumes, help separate
aerosol from cloudy scenes and provide information about
aerosol optical properties, as well as provide validation for
any improvements we implement.

2.2 MODIS Deep Blue aerosol algorithm

There is a second MODIS aerosol retrieval algorithm known
as Deep Blue (DB). The MODIS DB algorithm was first de-
signed to retrieve aerosol over arid and semi-arid regions and
later was later extended to vegetated surfaces (Hsu et al.,
2006, 2013). The DB method, in part, relies on aerosol light
absorption for such aerosol types as dust and smoke at 0.412
and 0.47 um wavelengths. Instead of aggregating the TOA re-
flectance to 10 km resolution first, the DB algorithm retrieves
AOD at 1 km resolution then aggregates AOD to 10 km. The
DB algorithm uses a pre-existing database of surface prop-
erties based on location, season, scattering angle, and the
greenness of the ground (Hsu et al., 2013). The reported un-
certainties of the highest quality DB retrievals (QA = 3) are
defined as in Eq. (2):

=+ ([0.086 +0.56tpB] / [1/10 + 1/1]) . )

where (g and u are the cosine of the solar and view zenith
angles, respectively (Sayer et al., 2013). In this study we used
DB in a case study to illustrate that both aerosol products (DT
and DB) from MODIS have problems retrieving a complete
image of AOD when optically thick smoke exist.

2.3 OMI UV aerosol index

Although optically thick smoke looks very similar to clouds
throughout most of the visible spectrum, smoke and clouds
appear very different at both shorter (ultraviolet, UV) and
longer (near-IR, NIR) wavelengths. Due to their strong ab-
sorption in the UV and near-UV wavelengths, smoke par-
ticles can be easily detected using observations in the UV
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spectrum, such as the Ozone Monitoring Instrument (OMI)
UV aerosol index (AI).

The Ozone Monitoring Instrument is installed on the Aura
satellite, which is part of the A-train constellation that fol-
lows Aqua (crossing the Equator at approximately 13:30
local solar time). OMI spans a broad swath of 2600 km
with a hyperspectral coverage from UV to visible (0.264 to
0.504 um) with a spatial resolution of 13 x 24 km at nadir
(Levelt et al., 2006). In this study, we use the UV Al, which is
reported within the OMI OMAERUYV product (Torres et al.,
2007, 2013). Near-zero Al values indicate clouds. Positive
Al values represent the presence of UV-absorbing aerosols
that can be black carbon, mineral dust, or volcanic ash. Some
non-UV-absorbing small aerosol particles such as sulfate
aerosols can also result in small negative Al, but the signal is
much weaker. Because OMI and MODIS have different spa-
tial resolutions and fields of view, we use the OMI-MODIS
collocation aerosol product (OMMYDAGEO), developed by
the OMI science team. The OMMYDAGEO product pro-
vides the OMI along-track and cross-track indices for ev-
ery overlapping pixel in the MODIS granule at both 3 and
10 km resolution for the two Level 2 MODIS aerosol prod-
ucts, MYDO04_L2 and MYDO04_3km (Joiner, 2017).

In this study, the OMI Al is used to identify heavy biomass
burning and smoke plumes at coarse resolution. Strong posi-
tive Al values over Indonesia indicate the potential presence
of heavy smoke aerosols, although high AI values may also
indicate aerosol above or aerosol mixed with cloud cases.
Thus, OMI Al values are only used as the first step for iden-
tifying heavy smoke plumes that can further be “rescued”.
Note that the OMI instrument suffers a row anomaly is-
sue after 2008, which results in data gaps within a granule
(OMIRA Team, 2012). The impact of missing Al data intro-
duced by the row anomaly on this study is discussed in detail
at the end of Sect. 4.0.

2.4 MODIS cloud optical properties algorithm

Smoke particles are much smaller in size than cloud particles,
so smoke particles appear nearly transparent at longer wave-
lengths. Thus, in tandem with using shorter UV wavelengths
(OMI Al) to identify potential smoke plumes, observations
from infrared (IR) and near-IR channels can be used to ex-
clude aerosol above or mixed with cloud scenes. The MODIS
cloud optical properties algorithm uses visible, near-IR, and
thermal IR channels to retrieve cloud physical and radiative
properties at 1 km resolution (Platnick et al., 2003; NASA,
2018). Examples of the retrieved parameters are cloud ther-
modynamic phase, cloud particle effective radius, and cloud
optical thickness along with retrieval quality flags. Like the
DT algorithm, the cloud algorithm makes assumptions about
the scene it is retrieving. When those assumptions are vio-
lated the retrieval fails and returns an error flag. The first as-
sumption to be tested is that the scene must contain a valid
cloud-top pressure, which is derived using thermal IR chan-

Atmos. Chem. Phys., 19, 259-274, 2019



262

nels. Then there are three diagnostic quality flags in the C6
cloud optical properties product (MYDO06) indicating that the
retrieval of cloud droplet or crystal effective radius failed at
one of these three wavelengths, 1.6, 2.1 and 3.7 um. If there is
no cloud in the scene and only smoke, there may be no valid
cloud-top pressure retrieved, and the cloud optical properties
algorithm will not produce a retrieval. Even if a retrieval is
attempted on the smoke, smoke particle sizes are orders of
magnitude smaller than cloud droplet or crystal sizes. The
cloud effective radius retrievals will be out of bounds of the
assumptions, the retrieval will fail and the diagnostic flags
will be set to false. Thus, these metrics and the lack of a
cloud retrieval can be used to separate smoke from clouds
(Gala Wind, personal communication, 2017).

2.5 AERONET sun and sky aerosol products

The AErosol RObotic NETwork (AERONET) is a global
aerosol-monitoring network of sun- and sky-observing ra-
diometers that is commonly used as a benchmark for vali-
dating satellite-retrieved AOD (Holben et al., 1998; Levy et
al., 2010, 2013; Remer et al., 2005; Sayer et al., 2013; Zhang
and Reid, 2006; Shi et al., 2011). The instruments measure
attenuated solar energy through two modes: direct sun and
scanning sky (Holben et al., 1998). The direct sun measure-
ment mode provides an observation of spectral AOD every 3
or 15 min (depending upon instrument version and settings).
Multiple quality assurance steps as well as vigorous cloud
screening procedures are applied to the version 2 Level 2.0
AQD data to ensure a high-quality data set. However, the
cloud screening removes many high AOD observations and
introduces a low bias to the version 2 data set (Eck et al.,
2018a). Thus, to validate our research algorithm described in
this paper we turn to the version 3 AERONET level 2 data
that specifically include these high AOD cases (Eck et al.,
2018a, b; Holben et al., 2016). This is particularly impor-
tant for the heavy smoke during the Indonesian event stud-
ied here. The version 3 AERONET data also tend to have
less thin cirrus contamination and better quality-control al-
gorithms than version 2. The AOD uncertainty in version 3
Level 2 data is practically the same as in Version 2, which is
~0.01 in the visible and near-IR wavelengths and increas-
ing to ~ 0.02 in the UV (Eck et al., 1999). Cloud screening
in Version 3 is described briefly in Eck et al. (2018b) and in
depth in a future paper (David Giles, personal communica-
tion, 2018). In this study, we will use data from the following
AERONET sites: Jambi, Palangkaraya, Kuching, Pontianak,
and Singapore. Figure 1 shows the geolocation of these five
sites.

Besides using AERONET AOD products from the direct
sun measurements for validation of satellite AOD, we also
make use of the AERONET inversion products from the
sky scanning measurements. Aerosol inversion products in-
clude aerosol microphysical properties such as particle size
distribution, complex refractive index, and phase function
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(Dubovik and King, 2000; Dubovik et al., 2002, 2006). We
use inversions from the almucantar-mode sky measurements
to build a regional smoke aerosol model. The almucantar
mode is a series of measurements of the sky, spanning all
azimuthal angles (0 to £180°), at a fixed zenith angle equal
to the solar zenith angle (SZA). This creates a set of mea-
surements across a range of scattering angles (Holben et al.,
1998). The limitation of the almucantar mode is that when
SZA is smaller than 50°, the range of scattering angles is
small, leading to potentially large measurement error (Hol-
ben et al., 2006). Holben et al. (2006) recommends a thresh-
old of AOD > 0.4 at 0.44 um for quality assurance of the
AERONET inversion products; we followed the procedures
of Holben, but used a stricter AOD threshold of AOD > 0.4
at 0.675 ym.

3 Case study: an intense high-AOD smoke event on
22 September 2015

To illustrate how missing retrievals can create a low bias in
regional MODIS AOD estimates, we focus on a fire event
that took place near Kalimantan on the island of Borneo on
22 September 2015. Figure 2a shows the MODIS RGB im-
age cropped to —5 to 5° latitude and 105 to 120° longitude.
Significant smoke aerosol plumes, in yellowish grey color,
can be observed across the image and are clearly distinguish-
able from the white clouds observed surrounding the smoke
plume. The Palangkaraya AERONET site (marked with a
blue star) within this scene is under extremely high smoke
concentrations on this day. In fact, the AOD is so high at this
site and date that there is no signal at 500 nm and even at
675 nm for most of the day (nearly complete attenuation).
The AOD at 875nm averaged 4.3 over the nearly 2h of
available measurements, and the average Angstrom exponent
from 870 to 1640 nm over this same interval was 1.85, thus
indicating fine-mode smoke particles and not cloud contam-
ination. Figure 2b and d show the corresponding aerosol re-
trievals from the DT and DB aerosol products and Fig. 2¢
shows the OMI Al values. Note that all retrievals from DT
and DB aerosol products are used here without further qual-
ity assurance filtering. Over heavy aerosol regions that have
OMI Al values exceeding 3.0, aerosol retrievals are mostly
missing from the MODIS DT aerosol products and are par-
tially missing from the MODIS DB aerosol products. Fig-
ure 2 demonstrates that passive sensor observations in visi-
ble wavelengths may have trouble separating heavy aerosol
plumes from clouds. In comparison, the OMI Al can be used
effectively to qualitatively detect thick UV-absorbing aerosol
plumes that are missed by MODIS DT and DB aerosol prod-
ucts. However, only using OMI Al cannot identify smoke
above clouds and thus, further analyses are performed to sep-
arate aerosols from clouds.
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Figure 1. Locations of the five AERONET sites that are used in this study from Google Maps. 1: Jambi (—1° N, 103° E); 2: Kuching (1° N,
110° E); 3: Palangkaraya (—2° N, 113° E); 4: Pontianak (0° N, 109° E); and 5: Singapore (1° N, 103° E).

The MODIS DT algorithm fails to retrieve AOD over
the thickest part of the plume, because the NDVI mask and
the internal cloud mask have filtered out the optically thick
smoke pixels. Within the region where heavy smoke plumes
exist, the NDVI value ranges from 0.0 to 0.1 (Fig. 2e), which
is below the operational threshold of 0.1 (in Fig. 2e only re-
gions colored white and red passed the NDVI threshold). As
we mentioned before, the threshold of NDVI > 0.1 is set to
ensure an optimum retrieval condition, which will require ad-
justment to allow retrievals over optically thick smoke. The
operational internal cloud mask also screens out the smoke
plume. Thus, a “call back” method is needed to distinguish
aerosols from clouds in regions where thick plumes exist.
As described in Sect. 2.4, based on the differences between
particle sizes of aerosols and clouds, the MODIS cloud opti-
cal property retrievals typically fail when applied to optically
thick smoke regions, and these failures are recorded in diag-
nostic flags. Note that the diagnostic flags are only available
when a scene is a priori identified as a cloud. Thus, these
diagnostic flags will only help detect misidentified smoke
plumes when the aerosol is sufficiently thick to resemble a
cloud by other tests. We examine these diagnostic flags from
the MODIS cloud product at 1 km resolution. If no success-
ful cloud retrieval is reported for attempts made using any
of the three possible wavelengths, we consider the pixel to
be an aerosol-polluted, cloud-free pixel. Examples of those
misidentified smoke pixels are shown in red in Fig. 2f. Plot-
ted on top of the true color image, red pixels are pixels with
failed cloud retrievals and are only visible above optically
thick aerosol plumes (Fig. 2f). Thus, these metrics will be
used in combination with the aerosol algorithm’s operational
cloud mask to identify cloud-free scenes with low to mod-
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erate aerosol loading and to reclassify scenes as cloud-free
in high aerosol loading when the operational mask initially
designates the scene as cloudy.

This case study demonstrates that the standard MODIS DT
aerosol algorithm is missing a large fraction of the heavy
smoke from Indonesian fires in 2015, partially due to very
low NDVI values over the thick smoke regions and par-
tially due to a very stringent cloud screening algorithm. This
case study also suggests that OMI Al is able to identify the
heavy smoke unencumbered by these constraints and that the
MODIS cloud optical properties product can be used for dis-
tinguishing between heavy smoke and clouds.

4 An aerosol algorithm for heavy smoke

Based on the case study, we have investigated a method for
“rescuing” heavy smoke pixels for the operational MODIS
DT products. This process is initiated by constructing a
NDVI mask. Note a NDVI threshold of 0.1 is used in the
operational MODIS DT algorithm. For regions with NDVI
values in between —0.02 to 0.1, observed areas could in-
clude one of the following scenarios such as coastal areas,
surface with standing water, arid or desert surfaces, urban
surfaces with haze, aerosols near cloud edges, and very opti-
cally thick aerosol plumes. The study region does not contain
a large fraction of deserts or highly urban surfaces. Thus, re-
gions with NDVI values less than 0.1 are likely to be regions
such as coastal areas, aerosols near cloud edges, and very op-
tically thick aerosol plumes. Furthermore, sensitivity studies
(not shown) suggest that an NDVI threshold of 0.01 can be
effectively used to remove coastal regions while maintaining
most of the optically thick aerosol plumes (e.g., see Fig. 2e).

Atmos. Chem. Phys., 19, 259-274, 2019
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Figure 2. A case study of a fire in Kalimantan on the island
of Borneo in Indonesia on 22 September 2015. (a) RGB image,
(b) MODIS DT operational image AOD, (¢) OMI Al (d) MODIS
DB all available AOD, (e) NDVI value, and (f) cloud product diag-
nostic flags taken from the MODIS cloud optical properties product.
In (e) NDVI values smaller than 0.01 are shown in light aqua and
values greater than 0.15 are shown in white. In (f) the red denotes
pixels where the cloud product has failed. These are overlain on
top of the MODIS true color image. The blue star represents the
AERONET site Palangkaraya.

Thus, pixels with NDVI values of 0.01-0.1 are considered
as potential thick smoke aerosol pixels and are selected for
further study.

Correspondingly, a modified cloud mask is also imple-
mented. Here, a pixel is identified as suitable for applying
aerosol retrieval algorithm if one or both of the following cri-
teria are met: (a) the pixel passed the cloud screening steps
based on the aerosol DT algorithm or (b) the pixel is both
identified as a “cloud pixel” by the operational aerosol DT
algorithm and also failed to produce a cloud optical prop-
erty retrieval based on the cloud diagnostic flags. In this
way, some pixels that were previously removed due to cloud
screening steps are reconsidered for aerosol retrievals. The
modified cloud screening method as described above can
still identify cloud pixels outside the heavy smoke regions.
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Within the heavy smoke regions, smoke pixels that were pre-
viously misidentified as “cloud pixels” can be successfully
labeled as smoke pixels, with the use of the modified cloud
screening method.

In addition, AOD at 0.55um (AODgss) of 5 is cur-
rently used as the upper limit for the operational MODIS
DT retrievals. Retrievals that require extrapolation beyond
AOD =35 return a fill value and are not retrieved. Thick
smoke plumes for the study period can have AOD values
exceeding this threshold. Thus, we explored removing this
upper limit. With this change, the algorithm is allowed to
extrapolate the LUT to retrieve higher AOD values. How-
ever, due to the limited sensitivity of the MODIS sensor un-
der very thick smoke plume conditions, we found that the
retrieval had little skill at distinguishing between different
AODs greater than 5. Therefore, we continue to constrain
AOD to 5 in our validation, which means all retrieved AOD
greater than 5 are assigned to 5 during the validation. We un-
derstand that this requirement could introduce underestima-
tion of AOD because AERONET has reported AODs greater
than 5 during this event; however, we took this precautious
step due to the limitation in MODIS sensor.

Besides the above steps to enable aerosol retrievals over
thick smoke plumes, an additional step is also implemented
to improve retrieval accuracy. A localized aerosol model is
needed for retrievals with very high AOD values as small
changes in aerosol properties can introduce large errors in
AOD retrievals (Ichoku et al., 2003). Thus, we will re-
examine the aerosol model used by the operational algo-
rithm for the region of interest for the given season. The
“moderately absorbing fine mode aerosol model” (Levy et
al., 2007a) is used for this region in the current operational
MODIS DT algorithm. This is a generic model derived from
data in other parts of the world and never specifically evalu-
ated for smoke aerosols in Indonesia.

When the operational DT aerosol models were first devel-
oped (Levy et al., 2007a), there were insufficient AERONET
sites available for deriving a region-specific aerosol model
for Indonesia. Now there are AERONET stations in Indone-
sia that are active during the smoke season. In this study,
a localized smoke aerosol model is developed by using
AERONET-derived (Version 3, Level 2) size distribution and
the refractive index for the study period of August to Oc-
tober 2015 for the five stations identified in Fig. 1. The size
distribution and the refractive index are analyzed as functions
of AOD at 0.675 um (AODy ¢75). Figure 3 shows the volume
size distributions of 163 inversions divided into 22 particle
radii sorted as a function AODy ¢75 into bins of 0-0.2, 0.2—
0.4,0.4-0.7,0.7-1.0, 1.0-1.5, 1.5-2.0, and 2.0-3.0, with the
mean of each bin plotted. Note that there is a systematic re-
lationship between particle size distribution and AOD, with
fine particle median effective radius (r,) increasing with in-
creasing AODg ¢75.

Figure 4 shows the spectral dependence of the real and
imaginary parts of the refractive index for all inversions and
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Figure 3. Size distribution as a function of AERONET AOD at
0.675 um, generated from the AERONET inversion products at the
five sites in Indonesia during August to October 2015. There are
163 total retrievals used in this plot separated into bins of AOD.
The number of retrievals within each AOD bin is shown in paren-
theses in the label. The error bars represent the standard deviation
within each size bin.

sorted as a function of AODg g75. Not all AERONET inver-
sions with size distribution also have a refractive index. There
are overall fewer retrievals of the refractive index and there-
fore these are grouped into only three bins, with the mean
of each bin plotted. Also, only AERONET refractive index
values, with corresponding AODy 75 larger than 0.4, were
used in this study to ensure that aerosol signal is significant
enough to retrieve these parameters. This is actually more
conservative than the AERONET team recommendations of
using inversion products with AOD at 0.44 ym > 0.4 (Hol-
ben et al., 2006). Figure 4 shows that, unlike size distribu-
tion, there is no systematic relationship between refractive
index and AOD in this data set. The variability in each AOD
bin exceeds the differences between the bins. Thus, we use
single mean values for the real and imaginary parts of the
refractive index in our regional aerosol model. Particularly,
we calculated averaged refractive index and interpolated to
0.55 um. The real part of the refractive index is interpolated
linearly, while the imaginary part is interpolated using loga-
rithms from 0.44 and 0.675 um (Lee et al., 2017). The lack
of AOD dependency in refractive index is possibly due to
the limited sample size of this data set that is not represen-
tative of the full range of conditions experienced during the
season. There are very few AERONET inversion products
for AODg 675 > 2.0 during the burning season, and yet from
AERONET direct sun observations of AOD and satellite re-
trievals we know that the AODg 75 > 2.0 is common. One
significant source of uncertainty in the research algorithm
being developed here is the extrapolation of these constant
refractive indices beyond the range of their formulation data
set to represent smoke optical properties for AOD’s > 2.0.
Table 1 shows the comparison between the fine mode of
the operational model that is used over the Indonesia region
and the newly generated smoke model. The natural loga-
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Figure 4. The real and imaginary parts of refractive index as a
function of AOD at 0.675 pm calculated from the AERONET inver-
sion product over the five sites in Indonesia during August to Oc-
tober 2015. The error bars represent the standard deviation within
each wavelength. A total of 113 data points are used to generate
this plot, 56 retrievals in AOD 0.4-1.0, 50 retrievals in AOD 1.0—
2.0, and 7 retrievals in AOD 2.0-3.0.

rithm of the standard deviation of the radius (o) and the vol-
ume of particles per cross section of the atmospheric column
(V) remain unchanged. However, Indonesian smoke parti-
cles are larger and increase more rapidly with AOD than the
operational model. The differences in the imaginary part of
the refractive index show that Indonesian smoke is substan-
tially less absorbing (whiter) than the generic moderately
absorbing model currently employed by the algorithm, es-
pecially for very thick smoke plumes. The generic (opera-
tional) aerosol model shows increased absorption with in-
creasing AOD, which may represent “brown” smoke better
rather than “white” smoke. However, we note that a widely
used AERONET-derived smoke model from data taken in
South America also shows no AOD dependence on its ab-
sorption properties (Dubovik et al., 2002). These differences,
especially those due to the differences in absorption, can in-
troduce a retrieval bias in AOD on the order of 1. We use this
newly generated regional smoke model to generate a research
AOD product over Indonesia region during the wildfire sea-
son.

Using the regional smoke model and the algorithm with
modified masking, we reproduce the AOD for the case study
of 22 September 2015, shown in Fig. 5a. This product is re-
ferred to as the “research AOD”. Compared with Fig. 2b, the
research AOD has greater data coverage (availability shown
in green in Fig. 5b), especially over the regions where opti-
cally thick smoke plumes exist. At the center of the plume,
the research AODy 55 can be as higher than 5, but is con-
strained to be 5 because of the lack of sensitivity of the al-
gorithm to very high AOD. Areas with no AOD retrievals
within the plume are identified as clouds. By using the new
aerosol model, the retrieval values are altered as well. When
the DT AODy 55 is less than 1.0, the two products report very
similar retrievals, with differences of less than 0.1 as shown

Atmos. Chem. Phys., 19, 259-274, 2019



266

Y. R. Shi et al.: Characterizing the 2015 Indonesia fire event

Table 1. Optical properties of the aerosol model used by the operational DT algorithm over the Indonesian region and the regional smoke
model (less absorbing model) generated in this study using AERONET inversion products August to October 2015. A dash (-) indicates that

no change is made between the two aerosol models

Model v, o Vo, Real part of  Imaginary part of
um pm3 pm_z refractive index refractive index
Moderate 0.0207 +0.145  0.13657 +0.374  0.16427077 143  —0.002t —0.008
absorbing
Regional less  0.0407 +0.160 - - 1.47 —0.0038
absorbing
(a) H 5. (b)
3.5 10.1
2 20 2
25 ~0.001
0 20 9 -0.001
s
1.0 -0.15
2 0.9 2 05
0.7
05 0.8
-4 04 -4
0.2
105 110 115 120 Moo 105 120

Figure 5. (a) Research AOD at 0.55 um retrieved from the case study of 22 September 2015 using altered thresholds on the NDVI test, cloud
mask, upper bound limits of the retrieval and a new regional aerosol model. (b) The differences between the research AOD (panel a) and the
DT AOD (Fig. 2b). The increased research AOD data coverage is shown in green.

in Fig. 5b. When the DT AODy ss is greater than 1.5, the re-
search algorithm produces smaller AODy 55 values. This is
due to the use of a new aerosol model with less absorption.
This modified research algorithm is tuned to retrieve over
optically thick smoke plumes and performs best when these
targeted features exist within the scene. Thus, a pre-selection
scheme of MODIS granules is needed to ensure the research
algorithm runs on an appropriate granule. To achieve this
goal, two parameters are considered: OMI Al for confirm-
ing the existence of absorbing aerosols and high AOD values
(AODy 55 > 2.5) from the operational DT product to ensure
that heavy smoke aerosol plumes exist within the scene. Still,
those parameters need to be used with caution. A thin layer of
absorbing aerosol above clouds can trigger very high Al val-
ues especially for regions with optically thick clouds (Meyer
et al., 2013; Yu et al., 2012; Alfaro-Contreras et al., 2014;
Torres et al., 2012). Also, erroneously high MODIS AOD can
be found over cloud edges due to inaccurate cloud screen-
ing or cloud 3-D effects (Zhang and Reid, 2006; Shi et al.,
2011). Utilization of the two parameters together provides
better detection of the ideal granules for the study. In order to
minimize “fake high aerosol loading” associated with cloud
artifacts, we require Al values to be greater than 2.5 and at
least 5 pixels of the operational MODIS DT AODy 55 to be
greater than 2.5. All granules are hand-checked from August
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to October 2015. There are 80 granules that satisfy our selec-
tion criteria and contain optically thick smoke plumes that
are not available in the operational DT products.

5 Validation of the research AOD for Indonesian
smoke in 2015

The research algorithm is applied to 80 selected granules.
The retrieved AODs from the research algorithm are eval-
uated against AERONET direct sun AODs and are inter-
compared with AODs from the operational DT product.
The comparison is based on spatiotemporal collocations of
MODIS retrievals within 0.3° latitude and longitude of the
AERONET site location and AERONET observations within
30min of the satellite overpass times. Figure 6 shows the
scatter plot of MODIS versus AERONET AODs for (1) the
operational DT product, (2) an intermediary retrieval that
uses the same masking as the operational algorithm but im-
plements the new heavy smoke aerosol model, and finally,
(3) the research version of the MODIS AOD using the new
aerosol model and the modified cloud and NDVI masks (re-
ferred as the research algorithm hereafter) along with the er-
ror statistics and error envelopes (£0.05 & 15 % AOD) from
the operational DT product. As shown in Fig. 6, the distri-
bution of MODIS-derived AOD products are generally cor-
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Figure 6. (a) Comparisons of the MODIS DT AOD at 0.55 pm (black dots) and an intermediate AOD retrieved using the new aerosol model,
but same masking as the MODIS DT algorithm (red dots). (b) AOD at 0.55 um retrieved by the full research algorithm, all plotted against
collocated AERONET observations at five AERONET sites August to October 2015. Also shown are RMSE, correlation coefficient (r2) and
number of collocations (No.) for the entire range of AODs (upper left and right) and also for a subset of the collocations when AERONET is
greater than 1 (lower right). The blue dashed lines are the error envelopes of £0.05 £ 15 % AOD.

related with AERONET AOD, with the DT AOD exhibit-
ing much larger scatter at high AODs. The mean bias in
Fig. 6a shows that changing the aerosol model reduced the
value of retrieved AOD, especially when high AOD exists.
This is because the newly generated regional smoke model
assumes smoke aerosols as less absorbing than the generic
model used in the operational DT retrievals does. That is also
the reason for the extra points retrieved when using the new
aerosol model: some retrievals (10 pixels) are greater than
5.0 when using the generic aerosol model and are not re-
ported by the operational algorithm. Applying the new, less-
absorbing smoke model brings those retrievals down into
the reportable range. In addition to bringing back previously
unreported retrievals, the retrievals from the new aerosol
model (Fig. 6a red) have lowered the root mean square error
(RMSE) and show higher correlation with AERONET data.
Meanwhile the full research algorithm, which uses the new
aerosol model and less restrictive masking (Fig. 6b), nearly
doubled the number of high AOD retrievals for AODg 55 > 1,
yet yields retrievals with RMSE that is much less than is re-
ported for the operational DT products.

We analyze the satellite—AERONET bias of the DT and re-
search AOD as a function of AERONET AOD, and we show
the results in Fig. 7. In Fig. 7 C6 AOD is binned every 5 pix-
els with 7 pixels in the last bin, and research AOD is binned
every 5 pixels with 6 pixels in the last bin. When AERONET
AOD is less than 1.5, there is a relatively small positive bias
between both MODIS products and the AERONET AOD.
When AERONET AOD is greater than 1.5, the bias in the
DT AOD grows to around 1.0 while the bias in the research
AQOD is only roughly half of that. The research product main-
tains a mean bias against AERONET of AAOD ~ 0.5 or less
across the entire range of AERONET AODs, and shows very
good agreement (AAOD < 0.25) at the very highest AODs
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(AODy 55 > 3). We note that the standard deviation of the
bias can be large even when the mean bias is low. The re-
gional aerosol model that we used represents nonabsorbing
white smoke emitted by intense peat burning, which may
be the dominant source of the heavy smoke here, but not
the only source. When the smoke is produced from open
flames or other processes, the optical properties of the re-
gional model will not capture these differences and biases
are introduced. For example, the mean negative bias in the
C6 AOD at AERONET AODyg s5 > 3 is partially due to the
generic aerosol model used in the operational algorithm that
is much more absorbing than the heavy smoke generated in
this event. We have used 163 AERONET inversions, inde-
pendent of the MODIS overpass, to form the research aerosol
model, and then validated the resulting research product us-
ing AERONET direct sun observations of AOD collocated
with MODIS retrievals. Figure 7 shows that for the most
part this aerosol model works for the highest loading type
of smoke, but given a larger formulation database with more
AERONET inversions, an aerosol model might be developed
that better captures the variability of smoke optical properties
during a heavy burning season.

The new research algorithm increases data coverage tem-
porally and spatially. An increase in temporal data cover-
age in the research product is expected and observed for all
five AERONET stations, because most of the sites are influ-
enced by optically thick smoke around mid-September to late
September. Palangkaraya and Pontianak AERONET sites are
located in the central and west parts of Kalimantan, where the
most severe burning occurs. Thus, the AOD time series over
these two sites show the most significant differences in data
coverage between DT AOD and the research AOD. Figure 8
shows the time series of pixel-level AERONET observations
(in grey), the MODIS DT (in blue) and the research prod-
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Figure 7. Bias between MODIS and AERONET overland AOD at
0.55 um as function of AERONET AOD at 0.55 um. Blue represents
the operational DT AOD and red represents the research AOD. The
dots are the mean bias within each AERONET AOD bin and the
shaded area represents the standard deviation of the bias.

uct (in red) over Palangkaraya and Pontianak sites. MODIS
data that are collocated with AERONET observations both
spatially and temporally are shown by dots, while crosses
show same-day spatial collocations that are not restricted to
430 min of overpass. Unlike Fig. 6, here we plot every in-
dividual MODIS retrieval within the 0.3° radius circle rather
than averaging all the retrievals in the circle and only plotting
the mean. Likewise, we plot every AERONET observation,
regardless of whether there is a collocation with MODIS over
pass. For this exercise only, because we note the large sample
of AERONET AOD greater than 5, we also plotted research
data that are larger than 5 using open circles and plus signs,
respectively. Also note that sun photometry reaches its limit
when AOD equals 7 multiplied by air mass (7 - m). Thus, the
gaps in the AERONET AODy 55 time series at Palangkaraya
and Pontianak could be because the AOD exceeded this value
at this wavelength. Comparison at a longer wavelength, such
as 0.675 um, might have yielded a larger sample because of
the small particle size of smoke and corresponding strong
spectral dependence would produce AODs less than the AOD
limit. However, using longer AERONET wavelengths would
have required spectral extrapolation of the AOD to 0.55 pm
in order to compare with the MODIS product, introducing
additional uncertainty.

The time series begins 28 August (Julian Day 240) at the
onset of severe biomass burning, and proceeds to 28 Octo-
ber (Julian Day 300), the conclusion of the heavy burning.
MODIS data that are collocated both spatially and tempo-
rally with AERONET show instantaneous agreement with
AERONET in Fig. 8. As MODIS and AERONET observa-
tion times begin to stray outside the 1h collocation win-
dow (crosses), the MODIS retrievals do not always agree
as well with AERONET observations. Overall, we see the
MODIS products matching AERONET well, both in terms
of day-to-day means and also in terms of spatiotemporal
variability. The spread of MODIS points, caused by spa-
tial variability, agrees well with the spread of AERONET
points, caused by temporal variability. This agreement sup-
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Figure 8. Time series of all AERONET observations of AOD at
0.55 um (in grey) as a function of Julian Day in 2015, and the cor-
responding MODIS DT (in blue) and research (in red) AOD over
the Palangkaraya and Pontianak AERONET sites. MODIS data that
are temporally and spatially collocated with AERONET are shown
by dots, data with values greater than 5 are shown by open circles.
Same-day spatial collocations that are not restricted to £30 min of
overpass are shown by crosses and data with values greater than 5
are shown by plus sign. All individual MODIS retrievals within 0.3°
of the AERONET site are included on the plot without averaging.

ports the use of spatiotemporal statistics in the scatter plots
of Fig. 6. The research product provides much more data, es-
pecially when AERONET-observed AOD is greater than 2.0
and captures the instantaneous high AOD that are observed
by AERONET. Over the Palangkaraya site, where the opera-
tional product misses most of the burning event, the research
product is able to retrieve on many days over this period. A
similar pattern can be found over the Pontianak site where the
research product provides better data coverage of events with
its AOD retrievals, following the pattern of the AERONET
AOD time series well. We also see several situations where
the operational DT values are too high, as compared with
AERONET, but the research algorithm values are less so.
For the limited pairs of collocation data that we have, the
research algorithm is producing values of AOD that gener-
ally agree with collocated AERONET values, on average. For
AODy 55 < 1.0 the error range is very similar to that from the
operational DT algorithm. For all available AOD during this
period and domain 48 % of the operational DT data points
fall within the error bounds defined for the global DT over-
land algorithm (20.05 £ 15 % AOD; Levy et al., 2013). In
comparisons, 66 % of the AODs retrieved by the research al-
gorithm fall within this error envelope. If we relax this er-
ror bound to 0.05+4 17 and —0.05 — 15 % AOD, then 70 % of
the research AOD values fall within this range. At the same
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time, the new research algorithm has doubled the number of
retrievals with AODg 55 > 1.

The research algorithm increased the number of retrievals
and reduced the bias against AERONET measurements.
However, the method retains some sources of uncertainty,
which contribute to errors in the retrieval. One is that the
AOD at 2.1 um can be high. In the DT algorithm we match
the measured TOA reflectance at 2.1, 0.66, and 0.47 um with
modeled reflectance. The surface reflectance and contribu-
tion of aerosols at 2.1 um are accounted for. This method is
most accurate when the influence of the aerosols at 2.1 pym
is negligible. Hence, having a high AOD at 2.1 um will still
influence the retrieval accuracy, because assumptions made
about aerosol optical properties influence the partition be-
tween surface and atmosphere contributions to the TOA sig-
nal. Although AERONET makes measurements of aerosol in
visible and near-IR wavelengths, which are used to derive the
modeled TOA reflectance, it does not provide aerosol prop-
erties at 2.1 um and there are few or no alternative sources.
Thus, we do not yet have a constraint on the uncertainty of
derived TOA reflectance at 2.1 um, and a high aerosol load-
ing at this wavelength will enlarge the uncertainties.

Another uncertainty source is in the aerosol model param-
eterization when AOD > 3. Our study shows it is important
to have an AOD-dependent aerosol optical model to reduce
the bias when retrieving AOD under very high aerosol load-
ing. Having more measurements of aerosol optical proper-
ties at AOD > 3 can further reduce our retrieved uncertain-
ties. However, a perfect AOD-dependent peat-burning smoke
aerosol model is still not adequate to represent every smoke
plume. Smoke properties vary largely due to the type of burn-
ing, and although peat burning (which tends to appear white)
dominated the 2015 Indonesia fire event, there were still
brown smoke plumes seen occasionally, which were caused
by open flaming. A fixed regional aerosol model introduces
bias when a different type of burning occurs. Thus, an instan-
taneous retrieval of aerosol absorption is the key to get more
accurate retrievals at very high aerosol loading, and further
research in this direction is needed.

6 Characterization of the Indonesian 2015
burning season

The new research algorithm provides better characterization
of the Indonesian fire season because it offers more frequent
sampling of the heavy smoke events and better accuracy. Be-
cause the research product retrieves high AOD more often
than the operational product, the MODIS-derived regional
AOD climatology will change. Figure 9 shows the histogram
of MODIS AOD over the Indonesian region from August to
October 2015 on a logarithmic scale. Here we do not con-
strain the upper limit of the retrieved AOD. The red is the
research AOD and the blue is the DT AOD. When AOD is
small the AOD distributions of the research product and the
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Figure 9. The histogram of MODIS AOD over the Indonesia region
from August to October 2015 in a logarithmic scale. The red is the
research AOD, the blue is the operational C6 AOD. Data that are
greater than 5 from the research AOD are shaded using white lines.

operational product are very similar. Note that in the —0.1 to
0.0 bin the research AOD (red) matches the DT AOD (blue)
and that is why no red bar can be seen. However, the re-
search product has much more data available than the opera-
tional product when AOD is greater than 2.0. The number of
AOD retrievals in the 4.0 to 5.0 bin almost doubles for the re-
search algorithm, as compared with the operational product,
and there are many retrievals of AOD greater than 5.0 in the
research product, but none with the operational product. Note
that due to removing the upper bound of AODg 55 =5.0 we
have allowed the research algorithm to extrapolate beyond
the limits of the LUT (Sect. 2.1), and the research AOD can
reach very high values. To maintain the integrity of the AOD
histogram, we included values greater than 5 in Fig. 9 and
showed them using shaded white lines. However, we do not
know the variations or uncertainties of these extremely high
AOD retrievals and thus recommended using them with cau-
tion. Again, during our validation and analyses, we capped
AOD at 5.

Monthly mean domain-averaged AOD statistics are shown
in Table 2 for both MODIS aerosol retrievals over land. The
domain is defined as —10 to 10° N and 95 to 125° E. Dur-
ing August when the severe burning has not yet started, the
two AOD products provide similar statistics of AOD. Then
during September and October, once the burning has become
severe, we see higher monthly mean AOD values over land
with the research algorithm than with the operational DT
algorithm. The difference in the overland domain averaged
AOD is about 0.2 for both months.

Figure 10a and b show the spatial distribution of averaged
AOD from the research product and the operational prod-
uct at 0.5° resolution over the study domain from August to
October 2015. The research product shows much more in-
tense smoke in the burning regions of Borneo and the island
of Sumatra than the operational DT algorithm does. How-
ever, there is almost no change of retrieved AOD over re-
gions where intense burning did not happen, such as north-
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Figure 10. Spatial distribution of averaged AOD from the (a) the operational product, (b) the research product and (c) the differences of
(b) minus (a) at 0.5° resolution over the study domain from August to October 2015.

Table 2. Domain-averaged (—10 to 10°N and 95 to 125°E)
monthly mean MODIS-derived AOD at 0.55 um over land for the
operational (DT) and research (Res) algorithms.

Months DT land Resland
August 0.41 0.41
September 0.99 1.22
October 1.26 1.51

ern Borneo and northern Sumatra. The differences between
Fig. 10a and b are shown in Fig. 10c. Grid boxes with AOD
differences greater than 1.0 are found over most of the ar-
eas where severe burning occurs. Such large differences are
found in 8 % of the total land grid boxes in September and
9 % in October. At the center of the burning, differences in
AOD can be above 3.0. Even over regions that are mostly
influenced by transported smoke, such as Singapore, the re-
search product shows AOD to be about 0.3 higher than what
operational product reports.

7 Summary and conclusions

The MODIS DT aerosol algorithm, developed for “normal”
global conditions, exhibits a problem in characterizing the
aerosol during an anomalously severe wildfire season in In-
donesia. The DT algorithm misses the heaviest smoke scenes
and returns inaccurate values of AOD when it does make a
retrieval in heavy smoke. We found that problems of missing
or inaccurate reporting of AOD over this event existed not
only in the MODIS DT aerosol algorithm but also in other
aerosol satellite products as well.

To “save” the optically thick smoke data that the tradi-
tional DT product misses, we tune the operational MODIS
DT aerosol algorithm pixel selection routines and develop
a regional aerosol model from local AERONET inversion
products. One important change is the cloud mask. Based
on the particle size differences in smoke and clouds, the
MODIS cloud optical properties algorithm will fail when
attempting to retrieve cloud microphysical properties from
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heavy aerosol. So, even if a pre-retrieval screening process
cannot separate smoke from clouds, a post-retrieval screen-
ing process, based on the failure of the cloud algorithm, will
make the distinction. We make use of the cloud product di-
agnostic flags to bring back heavy smoke pixels at the cen-
ter of the smoke plumes. A second important change is the
regional smoke model generated from AERONET inversion
products that better represents aerosol properties in this re-
gion. The generated smoke model is a function of AOD for
particle size distribution, but not for absorption properties.
The AERONET inversion products are analyzed from a lim-
ited data set that includes few retrievals for AODg 55 > 2.0.
Thus, extrapolation of aerosol particle properties to the high-
est AOD situations introduces uncertainty, especially for the
absorption properties which exhibit no AOD dependencies
for AODy 55 < 2.0, but may for AODg 55 > 2.0. We do note
that the standard deviation of the bias between AERONET
and the research AOD at high AOD can be large even when
the mean bias is low, possibly suggesting multiple types of
smoke with different absorbing properties in the data set. We
look forward to future data sets from AERONET which may
provide additional constraints on absorption and other optical
properties during high aerosol loadings.

This research algorithm is designed to retrieve very opti-
cally thick smoke and is applied only on MODIS granules
that contain the targeted feature. Thus, a pre-selection proce-
dure is used to select suitable granules for the study. The pre-
selection criteria are based on OMI Al, which indicates the
existence of absorbing aerosols, and the operational DT AOD
to filter out false high AOD due to cloud adjacent effects and
situations with aerosol above clouds. The research algorithm
is applied to all 80 selected granules over the study region
within the study time period. Validation of the research prod-
uct is done using AERONET version 3 level 2 AOD. The
comparisons show that the research product captures more
AOD when AODg 55 > 1.0 than does the operational DT al-
gorithm. The research AOD agrees better with AERONET
values, resulting in smaller RMSEs and higher correlation
statistics. Most of the improvement is found for AOD > 1.
On average, 66.3 % of the collocated research AOD agree
with the current error bounds determined from global anal-
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ysis of the DT retrievals, which is much better than 48.4 %
from the operational AOD in this region. Thus, the research
AOD over extreme high smoke loading conditions has nearly
the same accuracy as the DT product validated over the en-
tire globe. If we relax the error envelopes’ upper bound from
0.05+4 15 to 0.05+ 17 % AOD then 70 % of research AOD
fall within the bounds. The research retrieval has more than
double the number of AOD > 1, and with those additional
retrievals included, the bulk error statistics still show a large
improvement.

The ability to now retrieve these optically thick smoke
plumes alters our understanding of the aerosol system in this
region. Statistical analyses illustrate the severe intensity of
the monthly and seasonal mean AOD in the specific areas
of the heavy smoke, and also show the temporal frequency
that was missed with the operational DT algorithm. Using
the new algorithm, the domain-averaged overland AODy 55
increases by 0.22 in September and October of 2015, but over
regions where severe burning occurs, the new algorithm in-
creases AODg 55 by as much as 3.0 for each 0.5° grid box,
over the previous operational algorithm values.

This amount of missing AOD can skew the perception of
the severity of the event by researchers and decision-makers
who rely on the global DT aerosol for characterization of
aerosol systems. The missing AOD can also significantly af-
fect estimates of observationally based regional aerosol forc-
ing and improperly influence assimilation systems that rely
on the MODIS DT product. Estimating the perturbation of
extra AOD on regional radiative balance, despite being be-
yond the scope of this work, is an obvious task for future
study. The ability to bring back the missing retrievals and
assure their accuracy with a regionally appropriate aerosol
model is an important step in the development of the DT
algorithm. However, there are still many steps before this
promising research can become an operational application.
First, we do not know whether the changes made and vali-
dated for the 2015 season will hold in subsequent seasons.
Second, we do not know whether the tuning of the algo-
rithm for the Indonesian region will hold for other situa-
tions of heavy smoke from wildfires. The Indonesian smoke
proved to be relatively nonabsorbing, which might be simi-
lar to smoke from peat burnings in other places such as that
from Alaskan fires in summer of 2004 and 2005 (Eck et al.,
2009), but may be inappropriate for more absorbing smoke in
other places and situations. Third, there is also a philosoph-
ical question of how fragmented a global aerosol retrieval
should become. If there are too many special situations, the
product loses its global uniformity. However, the DT algo-
rithm team has already begun the move towards specially
tuned situations as they have implemented a special handling
of urban surfaces (Gupta et al., 2016). A specific set of as-
sumptions triggered by heavy smoke is a likely candidate for
the next DT specialty retrieval, but first we must prove its
global applicability.
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Data availability. All MODIS products are available for down-
load from the NASA Level-1 and Atmosphere Archive &
Distribution System (LAADS) Distributed Active Archive
Center (DAAC) at https://ladsweb.modaps.eosdis.nasa.gov/
missions-and-measurements/#atmosphere-chart (NASA,
2018) The OMMYDAGEO product can be accessed at https:
/ldisc.gsfc.nasa.gov/datacollection/OMMYDAGEO_003.html
(Joiner, 2017). Please contact the corresponding author for the
research data on 2015 Indonesia fire events.
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