1,126 research outputs found

    Reduction of discrete-time two-channel delayed systems

    Get PDF
    In this letter, the reduction method is extended to time-delay systems affected by two mismatched input delays. To this end, the intrinsic feedback structure of the retarded dynamics is exploited to deduce a reduced dynamics which is free of delays. Moreover, among other possibilities, an Immersion and Invariance feedback over the reduced dynamics is designed for achieving stabilization of the original systems. A chained sampled-data dynamics is used to show the effectiveness of the proposed control strategy through simulations

    Lyapunov stabilization of discrete-time feedforward dynamics

    Get PDF
    The paper discusses stabilization of nonlinear discrete-time dynamics in feedforward form. First it is shown how to define a Lyapunov function for the uncontrolled dynamics via the construction of a suitable cross-term. Then, stabilization is achieved in terms of u-average passivity. Several constructive cases are analyzed

    Nonlinear discrete-time systems with delayed control: a reduction

    Get PDF
    In this work, the notion of reduction is introduced for discrete-time nonlinear input-delayed systems. The retarded dynamics is reduced to a new system which is free of delays and equivalent (in terms of stabilizability) to the original one. Different stabilizing strategies are proposed over the reduced model. Connections with existing predictor-based methods are discussed. The methodology is also worked out over particular classes of time-delay systems as sampled-data dynamics affected by an entire input delay

    Modellazione non lineare di macchine sincrone e messa a punto di software per test di identificazione parametrica tramite risposta in frequenza

    Get PDF
    Modellazione non lineare di macchine sincrone e messa a punto di software per test di identificazione parametrica tramite risposta in frequenz

    Discrete port-controlled Hamiltonian dynamics and average passivation

    Get PDF
    The paper discusses the modeling and control of port-controlled Hamiltonian dynamics in a pure discrete-time domain. The main result stands in a novel differential-difference representation of discrete port-controlled Hamiltonian systems using the discrete gradient. In these terms, a passive output map is exhibited as well as a passivity based damping controller underlying the natural involvement of discrete-time average passivity

    Stabilization of cascaded nonlinear systems under sampling and delays

    Get PDF
    Over the last decades, the methodologies of dynamical systems and control theory have been playing an increasingly relevant role in a lot of situations of practical interest. Though, a lot of theoretical problem still remain unsolved. Among all, the ones concerning stability and stabilization are of paramount importance. In order to stabilize a physical (or not) system, it is necessary to acquire and interpret heterogeneous information on its behavior in order to correctly intervene on it. In general, those information are not available through a continuous flow but are provided in a synchronous or asynchronous way. This issue has to be unavoidably taken into account for the design of the control action. In a very natural way, all those heterogeneities define an hybrid system characterized by both continuous and discrete dynamics. This thesis is contextualized in this framework and aimed at proposing new methodologies for the stabilization of sampled-data nonlinear systems with focus toward the stabilization of cascade dynamics. In doing so, we shall propose a small number of tools for constructing sampled-data feedback laws stabilizing the origin of sampled-data nonlinear systems admitting cascade interconnection representations. To this end, we shall investigate on the effect of sampling on the properties of the continuous-time system while enhancing design procedures requiring no extra assumptions over the sampled-data equivalent model. Finally, we shall show the way sampling positively affects nonlinear retarded dynamics affected by a fixed and known time-delay over the input signal by enforcing on the implicit cascade representation the sampling process induces onto the retarded system

    On multiconsensus of multi-agent systems under aperiodic and asynchronous sampling

    Get PDF
    In this paper, the problem of estimating a suitable bound for ensuring multiconsensus of single integrators under asynchronous and aperiodical sampling is investigated. The estimate relies on a hybrid modeling of the network dynamics with a distributed time-delay acting over the connection. Simulations support the theoretical results
    • …
    corecore