55 research outputs found

    Obesity risk during collective quarantine for the COVID-19 epidemic

    Get PDF
    In March 2020, when COVID-19 epidemics involved several countries, the WHO defined the infection as a pandemic. Government adopted measures to prevent the diffusion of infection; i.e. quarantine and isolation. One of the consequences of quarantine-induced stress is a change in lifestyle and eating habits leading to obesity. The present commentary briefly analyzes the effects of quarantine on obesity

    COVID 19 outbreak: impact of the quarantine-induced stress on cardiovascular disease risk burden

    Get PDF
    \u201cemotional eating and reduction of physical activity lead to obesity and metabolic syndrome, both risk factors has a pivotal role in cardiovascular risk. Obesity is also associated with an increase risk of Type 2 diabete

    Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges

    Get PDF
    The growing occurrence of bone disorders and the increase in aging population have resulted in the need for more effective therapies to meet this request. Bone tissue engineering strategies, by combining biomaterials, cells, and signaling factors, are seen as alternatives to conventional bone grafts for repairing or rebuilding bone defects. Indeed, skeletal tissue engineering has not yet achieved full translation into clinical practice because of several challenges. Bone biofabrication by additive manufacturing techniques may represent a possible solution, with its intrinsic capability for accuracy, reproducibility, and customization of scaffolds as well as cell and signaling molecule delivery. This review examines the existing research in bone biofabrication and the appropriate cells and factors selection for successful bone regeneration as well as limitations affecting these approaches. Challenges that need to be tackled with the highest priority are the obtainment of appropriate vascularized scaffolds with an accurate spatiotemporal biochemical and mechanical stimuli release, in order to improve osseointegration as well as osteogenesis

    Depression pandemic and cardiovascular risk in the COVID-19 era and long COVID syndrome: gender makes a difference

    Get PDF
    The ongoing COVID-19 pandemic highlighted a significant interplay between cardiovascular disease (CVD), COVID-19 related inflammatory status, and depression. Cardiovascular (CV) injury is responsible for a substantial percentage of COVID-19 deaths while COVID-19 social restrictions emerged as a non-negligible risk factor for CVD as well as a variety of mental health issues, and in particular, depression. Inflammation seems to be a shared condition between these two disorders. Gender represents a potential modifying factor both in CVD and depression, as well as in COVID-19 short- and long-term outcomes, particularly in cases involving long-term COVID complications. Results from emerging studies indicate that COVID-19 pandemic affected male and female populations in different ways. Women seem to experience less severe short-term complications but suffer worse long-term COVID complications, including depression, reduced physical activity, and deteriorating lifestyle habits, all of which may impact CV risk. Here, we summarize the current state of knowledge about the interplay between COVID-19, depression, and CV risk in women

    Mediterranean Diet as a model of sustainable, resilient and healthy diet

    Get PDF
    A sustainable diet is characterized by food security and accessibility; healthy food, respect for environment and biodiversity, fair trade, locality/Seasonality and protection of culture, heritage, and skills. Being in line with these points, the Mediterranean Diet (MedD) has been largely recognized as sustainable and healthy

    Metabolism of Stem and Progenitor Cells: Proper Methods to Answer Specific Questions

    Get PDF
    Stem cells can stay quiescent for a long period of time or proliferate and differentiate into multiple lineages. The activity of stage-specific metabolic programs allows stem cells to best adapt their functions in different microenvironments. Specific cellular phenotypes can be, therefore, defined by precise metabolic signatures. Notably, not only cellular metabolism describes a defined cellular phenotype, but experimental evidence now clearly indicate that also rewiring cells towards a particular cellular metabolism can drive their cellular phenotype and function accordingly. Cellular metabolism can be studied by both targeted and untargeted approaches. Targeted analyses focus on a subset of identified metabolites and on their metabolic fluxes. In addition, the overall assessment of the oxygen consumption rate (OCR) gives a measure of the overall cellular oxidative metabolism and mitochondrial function. Untargeted approach provides a large-scale identification and quantification of the whole metabolome with the aim to describe a metabolic fingerprinting. In this review article, we overview the methodologies currently available for the study of invitro stem cell metabolism, including metabolic fluxes, fingerprint analyses, and single-cell metabolomics. Moreover, we summarize available approaches for the study of in vivo stem cell metabolism. For all of the described methods, we highlight their specificities and limitations. In addition, we discuss practical concerns about the most threatening steps, including metabolic quenching, sample preparation and extraction. A better knowledge of the precise metabolic signature defining specific cell population is instrumental to the design of novel therapeutic strategies able to drive undifferentiated stem cells towards a selective and valuable cellular phenotype
    • …
    corecore