285 research outputs found

    Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment

    Get PDF
    Currently, a significant effort in the world research panorama is focused on finding efficient solutions to a carbon-free energy supply, wave energy being one of the most promising sources of untapped renewable energy. However, wave energy is not currently economic, though control technology has been shown to significantly increase the energy capture capabilities. Usually, the synthesis of a wave energy control strategy requires the adoption of control-oriented models, which are prone to error, particularly arising from unmodelled hydrodynamics, given the complexity of the hydrodynamic interactions between the device and the ocean. In this context, data-driven and data-based control strategies provide a potential solution to some of these issues, using real-time data to gather information about the system dynamics and performance. Thus motivated, this study provides a detailed analysis of different approaches to the exploitation of data in the design of control philosophies for wave energy systems, establishing clear definitions of data-driven and data-based control in this field, together with a classification highlighting the various roles of data in the control synthesis process. In particular, we investigate intrinsic opportunities and limitations behind the use of data in the process of control synthesis, providing a comprehensive review together with critical considerations aimed at directly contributing towards the development of efficient data-driven and data-based control systems for wave energy devices

    Optimal control of wave energy systems considering nonlinear Froude–Krylov effects: control-oriented modelling and moment-based control

    Get PDF
    Motivated by the relevance of so-called nonlinear Froude–Krylov (FK) hydrodynamic effects in the accurate dynamical description of wave energy converters (WECs) under controlled conditions, and the apparent lack of a suitable control framework effectively capable of optimally harvesting ocean wave energy in such circumstances, we present, in this paper, an integrated framework to achieve such a control objective, by means of two main contributions. We first propose a data-based, control-oriented, modelling procedure, able to compute a suitable mathematical representation for nonlinear FK effects, fully compatible with state-of-the-art control procedures. Secondly, we propose a moment-based optimal control solution, capable of transcribing the energy-maximising optimal control problem for WECs subject to nonlinear FK effects, by incorporating the corresponding data-based FK model via moment-based theory, with real-time capabilities. We illustrate the application of the proposed framework, including energy absorption performance, by means of a comprehensive case study, comprising both the data-based modelling, and the optimal moment-based control of a heaving point absorber WEC subject to nonlinear FK force

    Nonlinear Model Reduction by Moment-Matching for a Point Absorber Wave Energy Conversion System

    Get PDF
    This paper presents a data-driven model reduction by moment-matching approach to construct control-oriented models for a point absorber device. The methodology chosen and developed generates models which are input-to-state linear, with any nonlinear behaviour confined to the output map. Such a map is the result of a data-driven approximation procedure, where the so-called moment of the point absorber system is estimated via a least-squares procedure. The resulting control-oriented model can inherently preserve steady-state properties of the target WEC system for a user-defined class of input signals of interest, with the computation only dependent upon a suitably defined set of input-output data

    Low-Cost Heaving Single-Buoy Wave-Energy Point Absorber Optimization for Sardinia West Coast

    Get PDF
    This work presents the Water Energy Point Absorber (WEPA), which is a heaving single-buoy point absorber optimized for a specific site off the west coast of Sardinia Island. The aim of the study is to present the optimization process undertaken to identify the best configuration in terms of performance and cost. The optimization is carried out thanks to a simulation tool developed in Matlab-Simulink environment and verified through to the commercial software Orcaflex. Simulations are performed in the time domain with the installation site’s waves as input. The hydrodynamics parameters are computed thanks to the commercial software Ansys Aqwa and given to the model as input. The yearly energy production is computed as output for each configuration. Several parametric analyses are performed to identify the optimal Power Take Off (PTO) and buoy size. Among the main findings, it shall be mentioned that the PTO-rated torque has a strong influence on the energy production, higher PTO-rated torque proved to have better performance. The optimal hull size is strictly related to the incoming waves, and for the given site the smaller hulls are performing better than larger ones. The hull height, hull mass and hull draft have little impact on productivity. Finally, a comprehensive techno–economic analysis is performed, showing that the best configuration can be identified only after a detailed feasibility study and rigorous cost analysis

    Wave energy converter mooring system: Available solvers and model validation

    Get PDF
    Talking about mooring systems for Wave Energy Converter shall be taken into account not only the station-keeping problem but also the influence of the mooring on the device motion. In literature several software for mooring modeling could be investigated, and among these software MoorDyn should be considered for its versatility. By the way, each model should be validated against experimental data to test its reliability hence, the aim of these paper is to follow the analysis which starts from an overview of the mooring system models and software and which ends with a model validation which has been performed against the experimental data obtained during Naples experimental campaign. Device kinematic has been recorded through a data acquisition system equipped in the scaled wave energy converter, and it has been used as input of the numerical simulation. The force recorded with a load cells system, connected with the mooring lines and the device, has been compared with the numerical one, derived from MoorDyn, and they have shown a marked overlapping that witnesses the validation

    Data-driven nonlinear model reduction by moment-matching for the ISWEC system

    Get PDF
    Given the relevance of control-oriented models in optimal control design for wave energy converters (WECs), this paper presents a data-driven approach to nonlinear model reduction by moment-matching for the ISWEC device, a device originally developed at the Politecnico di Torino. The presented model reduction technique is capable of providing simple WEC models, which inherently preserve steady-state response characteristics from the target nonlinear system, by merely using information on the system outputs, defined for a specific class of operating conditions. We demonstrate that the proposed model reduction by moment-matching procedure is well-posed for the ISWEC, and illustrate the efficacy of this reduction technique under a variety of sea conditions

    Analysis of a gyroscopic-stabilized floating offshore hybrid wind-wave platform

    Get PDF
    The energy innovation scenario sees hybrid wind-wave platforms as a promising technology for reducing the variability of the power output and for the minimization of the cost of offshore marine renewable installations. This article presents a model that describes the installation of a 5 MW wind turbine on a floating platform designed by Fincantieri and equipped with gyroscopic stabilization. The use of gyros allows for the delivery of platform stabilization by damping the wave and wind induced motion on the floater and at the same time producing extra power. Shetland Island was chosen as the reference site because of its particularly harsh weather. Final results show that the total production of power in moderate and medium climate conditions is considerable thanks to the installation of the gyro, together with a significant stabilization of the platform in terms of pitching angle and nacelle acceleration

    A Prototype of a New Generation Readout ASIC in 65 nm CMOS for Pixel Detectors at HL-LHC

    Get PDF
    The foreseen High-Luminosity upgrade at the CERN Large Hadron Collider (LHC) will constitute a new frontier for particle physics after year 2024, demanding for the installation of new silicon pixel detectors able to withstand unprecedented track densities and radiation levels in the inner tracking systems of current general-purpose experiments. This paper describes the implementation of a new-generation pixel chip demonstrator using a commercial 65 nm CMOS technology and targeting HL-LHC specifications. It was designed as part of the Italian INFN CHIPIX65 project and in close synergy with the international CERN RD53 collaboration on 65 nm CMOS. The prototype is composed of a matrix of 64×64 pixels with 50 μm × 50 μm cells featuring a compact design, low-noise and low-power performance. The pixel array integrates two different analogue front-end architectures working in parallel, one with asynchronous and one with synchronous hit discriminators. Common characteristics are a compact layout able to fit into half the pixel size, low-noise performance (ENC < 100 e− RMS for 50 fF input capacitance), below 5 μW/pixel power consumption, linear charge measurements up to 30 ke− input charge using Time-over-Threshold (ToT) encoding and leakage current compensation up to 50 nA per pixel. A novel region-based digital architecture has been designed in order to ensure > 99% efficiency for expected 3 GHz/cm2 hit rate, 1 MHz trigger rate and 12.5 μs trigger latency at HL-LHC. Pixels have been organized into regions of 4×4 cells and a common synthesized logic shared among all pixels provides a centralized memory for latency buffering, performs the trigger matching and handles the local configuration. The simulated particle inefficiency for this architecture is below 0.1% under nominal HL-LHC conditions. All global biases and voltages required by analogue front-ends are generated on-chip using 10-bit programmable DACs. Bias currents and voltages can be monitored by a 12-bit ADC. A bandgap voltage reference circuit provides a stable reference voltage for all these blocks. The readout of triggered data is based on replicated FIFOs placed at the chip periphery. Data are finally sent off-chip with 8b/10b encoding using a high-speed serializer. Triggerless and debug operating modes are also supported. Chip configuration and slow-control are performed through fully-duplex synchronous Serial Peripheral Interface (SPI) master/slave transactions. The I/O interface uses custom-designed JEDEC-compliant SLVS transmitters and receivers. All blocks and analogue front-ends have been silicon-proven during a previous prototyping phase and were demonstrated to be radiation tolerant up to 580 Mrad Total Ionizing Dose (TID) or beyond. The CHIPIX65 demonstrator was submitted for fabrication on July 2016. It was received back from the foundry on October 2016 and preliminary experimental characterizations started
    • …
    corecore