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Abstract Motivated by the relevance of so-called
nonlinear Froude–Krylov (FK) hydrodynamic effects
in the accurate dynamical description of wave energy
converters (WECs) under controlled conditions, and
the apparent lack of a suitable control framework effec-
tively capable of optimally harvesting ocean wave
energy in such circumstances, we present, in this paper,
an integrated framework to achieve such a control
objective, by means of two main contributions. We
first propose a data-based, control-oriented, modelling
procedure, able to compute a suitable mathematical
representation for nonlinear FK effects, fully compati-
ble with state-of-the-art control procedures. Secondly,
we propose a moment-based optimal control solution,
capable of transcribing the energy-maximising opti-
mal control problem for WECs subject to nonlinear
FK effects, by incorporating the corresponding data-
based FK model via moment-based theory, with real-
time capabilities. We illustrate the application of the
proposed framework, including energy absorption per-
formance, by means of a comprehensive case study,
comprisingboth thedata-basedmodelling, and theopti-
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mal moment-based control of a heaving point absorber
WEC subject to nonlinear FK forces.
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1 Introduction

Wave energy converters (WECs) are devices designed
to harvest the considerable energy available from
ocean waves, by suitable conversion of the hydrody-
namic energy contained in the surrounding wave field.
Regardless of the specific conversion principle (see e.g.
[12,17,56] for a detailed account of WEC absorption
principles), it is alreadywell-established thatWEC sys-
tems intrinsically require suitable control technology
to maximise energy absorption which, consequently,
reduces the associated levelised cost of wave energy,
hence directly supporting the pathway towards effec-
tive commercialisation [47,67].

Among the desired features ofWEC controllers, any
candidate algorithm must respect three fundamental
requirements, in order to be effective in realistic scenar-
ios (see e.g. [18,20]): (a) optimally maximise energy
extraction from the wave resource, (b) minimise any
potential risk of component damage (commonly for-
malised in terms of state and input constraints), and
(c) perform the computation of the associated control
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law within the real-time limits characterising the spe-
cific WEC system. Since the fundamental purpose of
a WEC is to effectively maximise energy absorption,
which typically translates into an increase in the WEC
operational range of motion [24,47], nonlinear dynam-
ical effects become significant, and non-representative
linear models may become inaccurate [14]. While the
computational effort usually increases considerably
with the complexity associated with the nonlinearities
included in the model, the corresponding gain in accu-
racy depends on the relevance of each nonlinear effect
for the particular device under scrutiny. It is hence
straightforward to see that a potential conflict arises
between these three requirements, since achieving (a)
and (b) above often require a precise (and hence poten-
tially complex) model of the WEC dynamics/control
objective, which almost inevitably conflicts with (c). In
other words, a more accurate model/control objective
representation leads to an increase in required compu-
tational (and analytical) effort to solve for the corre-
sponding optimal control law which, in turn, can pre-
clude real-time implementation/feasibility.

Though the vast majority of WEC control strate-
gies, available in the literature, consider linear hydro-
dynamicWECmodels (see e.g. [20]), some exceptions
do exists, most of which consider relatively ‘simple’
(from an analytical complexity perspective) nonlinear
hydrodynamic effects, including viscous drag forces
[4,7,27], and so-called nonlinear (state-dependent)
restoring effects [27,49]. Nonetheless, for a large vari-
ety of devices currently in development, such as heav-
ing point absorber WEC systems [36], a significant
nonlinear contribution of the hydrodynamic force is the
so-called Froude–Krylov (FK) effect (or force), which
directly arises as the integration of the incident pres-
sure field over the wetted surface of the device [33].
As a matter of fact, recent WEC design trends (see e.g.
[11]) are based upon floating structures with a variable
cross sectional area, and hence nonlinear FK effects
can become potentially dominant. Though a significant
effort has been expended in accurate numerical mod-
elling of FK forces, as reported in the WEC literature
(for both static and dynamic cases), e.g. [37,39,58],
optimal control design and synthesis, capable of effec-
tively taking into account such nonlinear FK effects,
is significantly less prevalent, with any notable excep-
tions listed in the following paragraph.

The authors of [16] design a variable-structure (slid-
ing mode, in this case, see e.g. [77]) control strategy

for a heaving point absorber WEC, under both static,
and dynamic FK forces, while [50] proposes a non-
linear model predictive controller for a WEC system
with very similar dynamic characteristics. We note that
both strategies presented in [16] and [50] share one fun-
damental disadvantage, which automatically precludes
direct implementation of such controllers in realistic
scenarios: The analytical model utilised to represent
FK forces (particularly dynamic FK effects) intrinsi-
cally assumes a regular (monochromatic) free-surface
elevation, i.e. composed of a single frequency compo-
nent. Note that this is a rather strong assumption (since
real waves are panchromatic), with the definition of
the FK model, and hence the subsequent design and
synthesis procedure for each specific control strategy,
depending upon the availability of quantities such as
the so-called wave number (see e.g. [29,47]), which
can only be defined for regular wave inputs, hence
precluding a direct application to stochastic (irregular)
wave fields. An analogous issue is present in the stud-
ies [36,46], which implement so-called latching con-
trol of heaving WEC systems subject to nonlinear FK
effects, by assuming that the free-surface elevation is
effectively regular, so as to be able to compute a closed-
form expression for the so-called latching time (which
is ill-posed in the case of irregular wave inputs1).

The lack of a model-based optimal control design
for WEC systems, subject to nonlinear FK effects,
can be attributed, at least partially, to the apparent
unavailability of control-oriented models, representing
such effects in a form ‘compatible’ with state-of-the-art
control techniques. Though highly efficient numerical
schemes have been presented in the literature of hydro-
dynamic WEC modelling, the assumptions adopted
are often restrictive, and produce mathematical repre-
sentations which are not entirely suitable for control
design/synthesis. For instance, a particularly numeri-
cally efficient approach to the computation of nonlinear
FKeffects, is that proposed in [35,36,39], implemented
via the open-source toolbox Nlfk4all [32,34]. While
such an approach is effectively able to achieve real-time
computation of FK forces, the methodology proposed
assumes a ‘frequency-by-frequency’ decomposition of
the associated pressure field, an assumption which ren-
ders a mathematical description generally incompati-

1 Note that [6] provides a definition of latching forWEC systems
under irregularwave excitation, though based upon a (monochro-
matic) approximation of the wave input.
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ble with model-based control design and synthesis pro-
cedures, which require a closed-form of (at least) the
input-output description of the WEC dynamics [20].

Motivated by the lack of both suitable control-
oriented modelling techniques for FK effects, and opti-
mal control algorithms capable of effectively incorpo-
rating such nonlinear behaviour into the computation
of a corresponding energy-maximising control law, we
establish, in this paper, two main objectives. Firstly,
we propose an exclusively data-based framework for
the approximation of nonlinear FK effects in terms of
mathematical structures compatible with state-of-the-
art control procedures. We achieve this by computing
a representative set of FK output data, via the numeri-
cal solver Nlfk4all, and subsequently utilising suit-
able techniques arising from the field of system identi-
fication and model reduction (see e.g. [1,71]), tailored
for each specific nonlinear FK effect, i.e. static and
dynamic. Secondly, we propose a nonlinear optimal
control strategy capable of effectively incorporating
the computed data-based control-oriented description
of FK forces into the energy-maximising control for-
mulation, by exploiting the system-theoretic notion of
a moment [2,3,28]. Moments are mathematical objects
directly connected to the steady-state response of the
WEC system, and have been recently shown to be
highly efficient in parameterising the WEC optimal
control problems (OCPs) in, for example, [23,27]. In
particular, [27] shows that the moment-based direct
transcription of the WEC energy-maximising OCP
renders a finite dimensional nonlinear program with
appealing characteristics, i.e. uniqueness of the cor-
responding control parameterisation, and existence of
globally optimal solutions, which facilitates the utili-
sation of efficient optimisation solvers with real-time
capabilities.Given that the framework presented in [27]
does not explicitly consider nonlinear FK effects, we
present, in this paper, an extension of such a moment-
based controlmethodology to the case ofWEC systems
containing FK nonlinearities, being able to preserve the
attractive properties characterising the moment-based
direct transcription of [27].

To briefly summarise, this paper encompasses the
following three main contributions:

(1) A data-based algorithm, tailored for control-
oriented modelling of static nonlinear FK effects,
based upon techniques belonging to the field of
model reduction.

(2) A data-based algorithm, tailored for control- ori-
ented modelling of dynamic nonlinear FK effects,
based upon techniques arising in the field of system
identification.

(3) A nonlinear optimal energy-maximising control
algorithm based upon the system theoretic notion
of moments, capable of effectively incorporating
the models computed via (1) and (2), resulting in a
well-posed optimisation problem, i.e. with guaran-
tees of uniqueness of the proposed control param-
eterisation, and existence of globally optimal solu-
tions.

We demonstrate, featuring an extensive case study, that
the proposed data-based modelling procedure fits well
with the control design requirements, i.e. there is awell-
defined synergy between contributions (1), (2) and (3)
of this paper, resulting in an overall control procedure
capable of achieving maximum energy extraction from
the wave resource, with real-time capabilities. This, in
turn, represents a powerful tool for optimising oper-
ation of a wide range of WEC technology via tai-
lored model-based control, including devices follow-
ing recent design trends with variable cross-sectional
area. Furthermore, we note that contributions (1) and
(2) effectively constitute a systematic methodology to
compute control-oriented WEC models incorporating
nonlinear FK effects, and can also be used for by a gen-
eral class of (alternative) model-based control formu-
lations, such as nonlinear model predictive control (see
[20]), further highlighting the potential impact of our
study beyond the proposed moment-based controller
(3).

The remainder of this paper is organised as follows.
Section 1.1 introduces the key notations/conventions
utilised throughout our paper, for clarity. Section 2
presents the fundamentals behindWEC hydrodynamic
modelling, including explicit definitions for both static,
and dynamic, nonlinear FK sources. Section 3 presents
the complete proposed data-based control-oriented
modelling procedure, while Sect. 4 discusses and
derives the theoretical tools required to solve the opti-
mal control problem for WEC systems with nonlinear
FK effects usingmoment-based theory. Section 5 offers
a case study which integrates both main contributions
of this paper, i.e. data-based modelling and optimal
control of WEC systems under nonlinear FK forces,
for a heaving point absorber device, demonstrating the
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capabilities of the proposed framework. Finally, Sect. 6
encompasses the main conclusions of our study.

1.1 Notation/conventions

We consider standard notation throughout the reminder
of this paper, with any exception detailed in the fol-
lowing. Note that we classify the considered notation
according to its nature/functionality, for the sake of
clarity.

Sets

R+ (R−) denotes the set of non-negative (non-positive)
real numbers. C0 denotes the set of pure-imaginary
complex numbers, while C<0 denotes the set of com-
plex numbers with negative real-part. The notation Nq

indicates the set of all positive natural numbers up to
q, i.e. Nq = {1, 2, . . . , q}.

Scalars, vectors and matrices

The symbol 0 stands for any zero element, dimen-
sioned according to the context. The symbol In denotes
the identity matrix in Cn×n , while the notation 1n×m

is used to denote a n × m Hadamard identity matrix
(i.e. a n × m matrix with all its entries equal to 1).
The superscript ᵀ denotes the transposition operator.
The spectrum of a matrix A ∈ R

n×n , i.e. the set of
its eigenvalues, is denoted by λ(A). The symbol

⊕

denotes the direct sum of n matrices, i.e.
⊕n

i=1 Ai =
diag(A1, A2, . . . , An). The notation �(z) and �(z),
with z ∈ C, stands for the real-part and the imaginary-
part operators, respectively. The Kronecker product
between two matrices M1 ∈ Rn×m and M2 ∈ Rp×q

is denoted by M1 ⊗ M2 ∈ Rnp×mq . The vectorisation
operator acting on a matrix A ∈ Cn×m is denoted as
vec(A) = [A] ∈ Cnm . The symbol εn ∈ Rn denotes
a vector with odd entries equal to 1 and even entries
equal to 0.

Functions

The generalised Dirac-δ function is denoted as δ :
R → R, t �→ δ(t). Given two functions f1 and
f2, such that f1 : X → Y and f2 : Z → X ,
the composition f1( f2(z)), which maps all z ∈ Z to

f1( f2(z)) ∈ Y , is denoted as f1 ◦ f2. The convo-
lution between two functions g1 and g2 over R, i.e.∫
R g1(τ )g2(t −τ)dτ is denoted as g1∗ g2. Letw1 and
w2 be two functions belonging to the space L2(Ξ),
with Ξ ⊂ R closed. Then, the inner-product between
w1 and w2 is given by 〈w1, w2〉 = ∫

Ξ
w1(τ )w2(τ )dτ .

2 Hydrodynamic WEC modelling

In this section, we recall fundamental concepts behind
nonlinear hydrodynamic modelling for wave energy
conversion systems, based on potential flow theory (see
e.g. [48,55]). From now on, we assume a single degree-
of-freedom (DoF) device, both for simplicity of expo-
sition, and clarity of notation. However, note that we
do this without any loss of generality, since the discus-
sion on these theoretical preliminaries, the correspond-
ing data-based approximation framework (proposed in
Sect. 3), and moment-based control solution (derived
in Sect. 4), can be extended to multi-DoF systems by
following analogous procedures.

Let z : R+ → R, t �→ z(t) and η : R+ → R,
t �→ η(t), be the device excursion (displacement),
and undisturbed free-surface elevation (measured at
the centre of the body’s reference frame), respectively.
The equation of motion of such a WEC system can be
described in terms of a systemΣW written, for t ∈ R+,
[15,29,37] as

ΣW :

⎧
⎪⎪⎨

⎪⎪⎩

mz̈ = fr(z) + fv(ż) + fd(η)+
f stFK(η, z) + f dynFK (η, z) − fu,

y = C
[
z ż

]ᵀ
,

(1)

where m ∈ R+ is the generalised mass of the device,
fr : R → R is the radiation force, fv : R → R
represents viscous effects, fd : R → R is the diffrac-
tion force, and the mappings f stFK : R × R → R

and f dynFK : R × R → R, represent the so-called
static and dynamic Froude–Krylov (FK) effects (or
forces), respectively. Note that such FK forces, which
constitute the main concern of this study, are subse-
quently described in detail in Sect. 2.1. The output
y : R+ → R is assumed to be a linear combina-
tion of device displacement and velocity, defined via
the matrix Cᵀ ∈ R2.

Remark 1 Common (i.e. standard) choices for C in (1)
include Cz = [1 0] and Cż = [0 1], which set either
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displacement or velocity as the output y of system (1),
respectively.

The radiation force fr is modelled based on linear
potential theory and, using the well-known Cummins’
equation [13], can be written as

fr(ż) = −m∞ z̈ − kr∗ ż, (2)

where m∞ is the so-called added-mass at infinite fre-
quency, and kr : R+ → R, kr ∈ L2(R), is the
(causal) radiation impulse response function describ-
ing the memory effect of the fluid response.

Remark 2 The impulse response function kr fully char-
acterises a linear time-invariant system with input ż
and output fr. The rationality behind representing fr in
terms of a convolution operator stems from the fact that
the impulse response kr is virtually always computed
numerically in a non-parametric form, via so-called
boundary element methods (BEMs), see e.g. [5,57].
We note that standard (in the sense of systemdynamics)
finite-dimensional parametric forms associated with kr
can be computed via system identification procedures,
see e.g. [22,42,59], though we do not pursue such an
approximation in this paper, since the proposed control
solution, presented in Sect. 4, can effectively handle
(2) without the need of a specific parametric represen-
tation.

The mapping fv, which represents viscous effects,
is written in terms of a smooth approximation of the
so-called Morison equation [53], i.e.

fv(ż) = −αv ż
√

ż2 + 
, (3)

with 
 ∈ R+ sufficiently small, and αv ∈ R+ directly
depending on the geometric properties of the device.

The diffraction force, represented via fd, can be
described (analogously to the radiation force equation
(2)), in terms of a convolution operator, i.e.

fd(η) = kd∗ η, (4)

where the impulse response kd : R+ → R, kd ∈
L2(R), fully characterises a linear time-invariant sys-
temwith input η and output fd. Note that, as in the case
of the radiation force (see Remark 2), the diffraction
kernel kd is virtually always computed numerically via
BEM solvers, i.e. in a non-parametric form, hence the
rational behind representing fd in terms of an appro-
priate convolution operator.

Finally, the map fu : R+ → R, t �→ fu(t), repre-
sents the control force (or law), which is to be designed

so as to maximise the energy-absorption capabilities
of the WEC system. The synthesis of such a control
force, for the nonlinear WEC system defined in (1),
effectively constitutes one of the main concerns of this
study, and is specifically addressed, within a moment-
based approach, in Sect. 4.

2.1 On the definition of nonlinear FK forces

As discussed in Sect. 1, a significant nonlinear compo-
nent of the hydrodynamic force acting in (1) is the so-
called FK effect (or force), which directly arises from
integration of the incident pressure over the instan-
taneous wetted surface of the device. We revisit, in
the reminder of this section, fundamental preliminar-
ies associated with FK effects, as extensively discussed
in, for instance, [36,37,39].

Let Sw(η, z) ≡ Sw be the instantaneous wetted
surface of the device, and let the mappings pst : R →
R, and pdyn : R × R → R denote the static and
dynamic pressures, respectively, defined as

pst(z) = ρgz, pdyn(η, z) = ρ
∂ΨI(η, z)

∂t
, (5)

where ΨI denotes the so-called incident potential func-
tion (see [48,55]).

The integration of the static pressure pst, as defined
in Eq. (5), over the instantaneous wetted surface Sw,
yields the so-called static FK force, i.e. the map f stFK,
defined as

f stFK(η, z) = fg −
∫∫

Sw

pst(z)nzdS , (6)

where fg denotes the gravity force, and nz is a (nor-
malised) vector orthogonal to Sw, while the corre-
sponding integration of the dynamic pressure mapping
pdyn in (5), i.e.

f dynFK (η, z) = −
∫∫

Sw

pdyn(η, z)nzdS , (7)

gives rise to the so-called dynamic Froude–Krylov
force f dynFK .

In the case of a generic geometry, i.e. a general
surface Sw, the computation of both (6) and (7) can
be performed by an appropriate spatial discretisation
(e.g. mesh-based) of Sw. Given the inherent com-
plexity behind the numerical computation of the FK
operators, defined in the paragraph above, analyti-
cal and semi-analytical solutions of both (6) and (7)
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have been proposed in [35,36,39]. In particular, the
dynamic pressure mapping in (5) is explicitly written
in terms of so-called Airy’s theory, while the instan-
taneous wetted surface is parameterised using differ-
ent sets of coordinates, depending on the fundamen-
tal WEC geometry. As discussed in Sect. 1, while
the approach proposed in [35,36,39], implemented in
the open-source toolbox Nlfk4all [32,34], is able
to achieve real-time (numerical) computation of both
static and dynamic FK effects, the methodology pro-
posed assumes a ‘frequency-by-frequency’ decompo-
sition of the associated pressure field, producing a
mathematical descriptionwhich is, in general, not com-
patiblewith state-of-the-art energy-maximising control
design/synthesis procedures, whose formulation vir-
tually always requires a closed-form of (at least) the
input-output description of the WEC dynamics2.

Motivated by the necessity of accurate, yet computa-
tionally efficient, control-oriented models of the WEC
system in (1), we propose, in this paper, a data-based
approximation framework for both static and dynamic
FK forces to fulfil such a purpose. The approach,
described in detail in Sect. 3, is capable of provid-
ing mathematical descriptions which are compatible
with control design procedures, i.e. which are control-
oriented, hence not only being convenient for the spe-
cific control approach presented in Sect. 4, but also for
a general class of WEC control systems, such as those
described in [20,67].

3 Data-based control-oriented modelling of FK
forces

Following the discussion provided in Sect. 2.1, we
present, in this section, a control-oriented data-based
approximation method for both static and dynamic FK
mappings. To achieve such an objective, we adopt a
system-theoretic approach to the definition of (6) and
(7), andmake explicit use of a specific type of determin-
istic persistently exciting (see e.g. [54]) signal termed
a multisine (see e.g. [71,72]), which we formally intro-
duce in Sect. 3.1. Via the definition of such a class of
signals, we collect representative output data for the
systems induced by the mappings defined in (6) and

2 Asamatter of fact, the vastmajority ofWECcontrol/estimation
strategies require a (more general) input-to-state representation
of the device (see [20]).

(7), by means of the open-source nonlinear FK solver
Nlfk4all. The corresponding input-output data set is
then directly used in a black-box approach to identify
suitable approximating structures via system identifi-
cation procedures.

Given the rather different natures of the static and
dynamic FK effects, the reminder of this section is
organised into separate parts, as follows. Section 3.1
introduces the class of signals utilised for the approxi-
mation procedure proposed. Section 3.2 presents a gen-
eral framework to approximate the static mapping of
(6) in terms of the definition of a suitable function
space. Section 3.3 discusses an approximation method
for dynamic FK effects, in terms of a representative
(see e.g. [14]) linear differential equation, i.e. a linear
system designed to represent, as closely as possible,
the associated FKmapping for the effective operational
space of the device. Note that, as we explicitly discuss
and demonstrate in Sect. 5, this is substantially differ-
ent from linearising (7) about the device equilibrium
position, which inherently derives a model designed
to characterise the associated dynamic FK effects for
an infinitesimal variation in displacement of the WEC
device, which is at odds withWEC systems under opti-
mal control conditions (see also the discussion pro-
vided in Sect. 1). Finally, Sect. 3.4 presents the over-
all control-oriented model for the WEC system under
nonlinear FK effects, which is utilised for the optimal
control design of Sect. 4.

3.1 Multisine excitation

A multisine signal is a specific type of deterministic
excitation which can be used to solve a wide variety of
identification problems [71,72]. It has the advantage of
being periodic, so that the issue of spectral leakage can
be avoided. Furthermore, signals with user-controlled
amplitude distribution and power spectrum can be eas-
ily produced, hence capable of exciting the target sys-
tem in a pre-specified frequency band especially tai-
lored for the wave energy modelling/control case3, due
to the specific banded nature of the free-surface eleva-
tion (wave) input η. We give a formal definition of such
signals in the following paragraph.

3 Multisine signals have been already considered within the
WEC identification literature in [14], though not for the compu-
tation of FK effects, but for the approximation of the input-output
map η �→ y.
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Fig. 1 Multisine excitation signal fid: Time-domain represen-
tation (top), and associated frequency-domain amplitude spectra
(bottom)

A multisine fid is a periodic signal with a band-
limited spectrum. As such, it can be fully represented
in terms of a Fourier series, i.e. a trigonometric sum of
order K , with K ∈ N finite, such as

fid(t) =
K∑

p=1

Ap cos
(
l pωidt + ψp

)
, (8)

where {Ap, ψp}K
i=1 ⊂ R, and where ωid = 2π/Tid,

with Tid the measurement period, and l p a positive inte-
ger. The frequency ωid is often referred to as the fun-
damental frequency (in [rad/s]) of the multisine signal.
Typically, when a multisine signal is used, the set of
phases {ψp} is optimised aiming at minimising the so-
called crest factor (see, for instance, [40]). One of the
most well-established approaches, to achieve such an
objective, is that proposed in [73], commonly referred
to as Schroeder phases. In particular, for a flat ampli-
tude spectrum (i.e. Ap = C ∈ R+, ∀p ∈ NK ), [73]
suggests the set of phases in (8) as

ψp = ψ1 − p(p − 1)

K
π, (9)

for p ∈ NK /1.

Remark 3 The definition of the set of Schroeder phases
depends upon a rather simple analytical condition,
i.e. equation (9). Although not considered in this
manuscript, we do note that more ‘sophisticated’ meth-
ods exist for the optimal definition of the set of phases
{φp}, which are often based upon tailored optimisation
routines. The reader is referred to, for instance, [40],
for further discussion on this topic.

Aiming to briefly illustrate the nature of such a sig-
nal, Figure 1 (top) presents amultisine signal withmea-
surement period Tid ≈ 314 [s], which corresponds to a

fundamental frequency of ωid ≈ 0.02 [rad/s], together
with an amplitude spectrum, as shown in Figure 1 (bot-
tom). Note that the frequency band selected for the
generation of such a multisine signal is set to [0.5, 5]
[rad/s], which, as discussed in Sect. 5, is consistent
with the identification procedures performed in the case
study presented in this paper.

Remark 4 Note that this type of signal can excite a spe-
cific frequency band,with a user-defined spectrum (e.g.
flat, as in the case of Figure 1), keeping an almost con-
stant instantaneous amplitude in time. This last ‘qual-
ity’ is specifically useful for thewave energy case, facil-
itating an analogous definition of ‘regularwave height’,
for the (inherently polychromatic) multisine signal fid.

Remark 5 The limits associated with the exciting fre-
quency band are intrinsically linked to the nature (i.e.
dynamics), and operating conditions, of the system to
be identified/approximated. We provide a more exten-
sive discussion of the selection/design of such charac-
teristics in Sect. 5.

3.2 Static FK effects

The mapping f stFK is a static function which depends
upon both the free-surface elevation η, and the dis-
placement of the device z. Although, for some spe-
cific geometries, f stFK can be derived analytically (see
e.g. [36]), the objective of this section is to propose a
‘generic’ data-based methodology, i.e. independent of
the specific device shape. To derive such a framework,
we begin by noting that the mapping f stFK can be seen,
from a system-theoretic perspective, as a static system
Σ st, with both η and z as inputs, i.e.

Σ st : {
yst = f stFK(η, z), (10)

where yst(t) ∈ R defines the corresponding output,
i.e. the static FK force. It is relatively straightforward
to see that such a system is inherently interconnected
with the ‘remainder’ of the WEC dynamics described
in (1). To be precise, one can define the auxiliary system
ΣW /Σ st as

ΣW/Σ st :

⎧
⎪⎪⎨

⎪⎪⎩

mz̈ = fr(z) + fv(ż) + fd(η)+
f dynFK (η, z) + fu,

y = Cz
[
z ż

]ᵀ = z,

(11)

which is essentially system ΣW in (1) without consid-
ering static FK effects, and ‘decoupling’ Σ st from (1),
as illustrated in Fig. 2.
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Fig. 2 Schematic illustration of static Froude–Krylov from a
system-theoretic perspective

Remark 6 For the reminder of this section, andwithout
any loss of generality, we consider fu = 0, ∀t ∈ R+.
Note that fu does not play a role in the identification of
(10), sinceΣ st is fully characterised by a staticmapping
depending only directly on η and z.

Before proceeding with a description of the cor-
responding data-based approximation framework for
static FK effects, we introduce the following standing
assumption: The mapping f stFK belongs to the space
generated by a family of real-valued functions {φ j }∞j=1,

with φ j : R × R → R, φ j ∈ C1,(η, z) �→ φ j (η, z),
φ j (0, 0) = 0, i.e. there exists a set of constants {a j }∞j=1
such that

f stFK(η, z) =
∞∑

j=1

a jφ j (η, z), (12)

for every {η(t), z(t)} ⊂ R. This assumption, which is
relatively standard in the literature (see the arguments
posed in, for instance, [70]), provides a natural defi-
nition for an approximation of f stFK, as detailed in the
following: From now on, we call the mapping f̃ stFK,
defined as

f̃ stFK(η, z) =
N∑

j=1

a jφ j (η, z), (13)

with N ∈ N finite, the approximated static nonlin-
ear FK force. This definition, posed by means of (13),
is based upon the idea of ‘truncating’ the expansion
for f stFK in Eq. (12), considering only N basis func-
tions, i.e. the static Froude–Krylov mapping is essen-
tially approximated by its expansion on the subset
P = {φ j }N

j=1. The main idea is now to compute the
approximated FK mapping, in the sense of (13), solely
based upon data, i.e. without explicit knowledge of the
internal structure of (10).

Remark 7 For the sake of completeness, we note that,
by means of (13), one can straightforwardly define an

approximating system Σ̃ st, analogously to Eq. (10),
simply as

Σ̃ st :
{

ỹst = f̃ stFK(η, z), (14)

where, clearly, ỹst ≈ yst in the sense of (13).

Remark 8 In practice, the set of functions P can be
selected via a trial and error procedure, starting with,
for instance, a polynomial expansion, if the mapping
f stFK is known to be smooth.

In order to proceed with the proposition of the data-
based approximation framework for static FK forces,
we introduce the following set of auxiliary variables:

P = [
a1 a2 . . . aN

]
,

Φ(η, z) = [
φ1(η, z) φ2(η, z) . . . φN (η, z)

]ᵀ
,

(15)

where {Pᵀ, Φ(η, z)} ⊂ RN , so that the approximated
mapping defined in (13) can be written in a compact
form as

f̃ stFK(η, z) = PΦ(η, z). (16)

With the compact definition presented in (16), the
approximation problem reduces to finding a suitable
matrix P , for any given basis-function vector Φ(η, z).
In particular, we now propose a method to compute P
based upon a recursive least-squares approach, inspired
by the data-driven model reduction framework of [70].
Let T w

k = {tk−w−1, . . . , tk−1, tk} ⊂ R+ be a set of
time-instants, where we numerically evaluate the out-
put of the target static FK system, i.e. yst in (10). Note
that the set T w

k basically represents a moving window
ofw ∈ N samples. Suppose that, in the numerical eval-
uation of yst, we select the external input η (i.e. free-
surface elevation) as a band-limited multisine signal,
i.e. η = fid (see Sect. 3.1), and let Ξk ∈ Rw×N and
Υk ∈ Rw, with w ≥ N , be defined as

Ξk = [
Φtk−w−1 . . . Φtk−1 Φtk

]ᵀ
,

Υk = [
ysttk−w−1

. . . ysttk−1
ysttk

]ᵀ
.

(17)

with Φtr = Φ(η(tr ), z(tr )) ∈ RN and ysttr = yst(tr ) ∈
R.

LetPk be an online estimate of the matrixP in (15),
obtained using the set Tw

k , i.e. computed at the time tk
using the lastw instants of time. The underpinning idea
is to determine Pk based upon the following optimal
criterion:

min
Pk

‖ΞkPᵀ
k − Υk‖22, (18)
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i.e. to find the least-squares solution ofΞkPᵀ
k = Υk , in

a recursive fashion. From now on, and aiming to guar-
antee well-posedness of the upcoming methodology,
we assume that the elements of Tw

k are selected such
that Ξk is full column rank for all k ∈ N.

Remark 9 Note that, since η is selected as a multisine
signal (which is effectively a persistently exciting sig-
nal, see [54,71]), the set Tw

k can always be selected
such that the above assumption holds, i.e. we do not
lose any generality.

We now propose, in Algorithm 1, a recursive least-
squares solution to solve forPk , by adapting the proce-
dure proposed in [70], originally developed for model
reduction purposes.

Algorithm 1 can be briefly summarised as follows.
After selecting a suitable multisine signal fid for the
generation of η, and a sufficiently large initial value
k0, the matrices Ξk and Υk are constructed iteratively,
using information on the (supplied) input η = fid, and
the numerically computed device motion z, and total
static force yst. Note that the latter two variables can
be readily computed via any numerical nonlinear FK
solver, such as theNlfk4all toolbox [32,34] (which is
explicitly considered in this paper within the case study
presented in Sect. 5). Every time a new set of samples
is available, old information is discarded, and the algo-
rithm is repeated until achieving a certain threshold
condition on the error between iterations, specified by
the (sufficiently small) value ε.

Algorithm 1 (Static FK approximation) Let k0 be a
sufficiently large integer, and let ε be a sufficiently small
user-defined error tolerance. DefineP0 ∈ R1×N as the
initialisation vector for the computation of P .

then:
k = k0;
E = ε + 1;
Pk−1 = P0;
while E > ε do

Construct the matrices Ξk and Υk as in (17);
Ψk = (Ξ

ᵀ
k Ξk)

−1;
Pᵀ

k = Pᵀ
k−1 + ΨkΦtk (y

st
tk − Φ

ᵀ
tkP

ᵀ
k−1)

− ΨkΦtk−w
(ysttk−w

− Φ
ᵀ
tk−w

Pᵀ
k−1);

E = ‖Pk − Pk−1‖2;
k = k + 1;

end

Remark 10 The matrix Ψk is always well-defined due
to the fact that Ξk is full column rank for all k ∈ N.

Remark 11 The selection of P0, required to start the
recursion, can be done in terms of ‘dummy’ values (e.g.
random values with a uniform distribution). Since the
associated recursive algorithm ‘forgets’ old measure-
ments (i.e. the values involved in the computation of
P are updated at each k), after a sufficient number of
iterations the effect of such a selection is effectively
forgotten.

3.3 Dynamic FK effects

In contrast to the case of static effects, the mapping
associated with dynamic FK forces, i.e. equation (7),
inherently represents a dynamic entity. In particular,
taking a system-theoretic perspective, f dynFK can be gen-
erally represented as the output mapping ydyn of a
dynamical system Σdyn, with both η and z as inputs,
i.e.

Σdyn :
{

q̇ = κ(q, η, z),

f dynFK = θ(q, η, z) = ydyn,
(19)

where q(t) ∈ Rn is the associated state-vector, with
n ∈ N sufficiently large. From a physical standpoint
(see e.g. [33]), the (locally smooth) mappings κ : Rn ×
R × R → Rn and θ : Rn × R × R → R are such
that the following conditions hold:

1. κ(0, 0, 0) = 0 and θ(0, 0, 0) = 0.
2. The zero-equilibrium of system q̇ = κ(q, 0, 0) is

locally exponentially stable.
3. For every (q, η, z), defined in a sufficiently small

neighbourhood N of (q, η, z) = (0, 0, 0), the
behaviour of system (19) can be well-represented
in terms of a strictly proper linear system Σ̃dyn with
only η as external input. To be precise, the following
conditions

∂κ

∂x

∣
∣
∣
∣
(0,0,0)

= F,
∂κ

∂η

∣
∣
∣
∣
(0,0,0)

= G,
∂κ

∂z

∣
∣
∣
∣
(0,0,0)

= 0,

∂θ

∂x

∣
∣
∣
∣
(0,0,0)

= H,
∂θ

∂η

∣
∣
∣
∣
(0,0,0)

= 0,
∂θ

∂z

∣
∣
∣
∣
(0,0,0)

= 0,

(20)

hold, with F ∈ Rn×n , {G, Hᵀ} ⊂ Rn , and hence
system Σ̃dyn can be written as

Σ̃dyn :
{

q̇(t) = Fq(t) + Gη(t),

f̃ dynFK (t) = Hq(t + tc) = ỹdyn(t),
(21)

where tc ∈ R+, and λ(F) ⊂ C<0 by condition 2
above.
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Remark 12 The value tc, which denotes a non-causal
time-shift (i.e. advance), stems from the fact that the
generatedwave (free-surface elevation)may impact the
WEC body and exert a wave force before any wave has
reached the device ‘centre’ (see, for instance, [29]).

There is, naturally, a significant motivation to work
with the linear structure posed in (21). Such a represen-
tation is computationally simpler, obeys the principle of
superposition, and lends itself to a vast set ofmathemat-
ical tools which can be used for analysis, simulation,
and control/estimator design. However, in the current
literature, system Σ̃dyn is almost exclusively charac-
terised via so-called boundary element method solvers,
such as the open-source softwareNemoh [5], where the
impulse response associated with system (21) is com-
puted (in a non-parametric form) under the assump-
tion of infinitesimally small motion of the device about
the zero-equilibrium (see [14,18,20]). Given that the
design objective for WECs is that of maximising con-
verted energy, which typically implies a large induced
device motion (see also the discussion provided in
Sect. 1), such a methodology is likely to result in a
non-representative linear model for the dynamic FK
effect.

In contrast to BEM solvers, we propose a method-
ology to compute a representative linear model Σ̃dyn,
valid for a given set of wave operating conditions for
the device, i.e. significant wave heights and peak peri-
ods. To achieve this, we employ tools from the field
of system identification, and we propose a framework
to provide representative models via so-called black-
box structures, using only input-output data in the
frequency-domain. Such a methodology is discussed
in the following paragraphs.

LetU = {ηi = fidi }Q
i=1 be a set of suitably selected

multisine input signals (i.e. free-surface elevation pro-
files), with Q ∈ N≥1, generating a corresponding set
of outputs Y = {ydyni }Q

i=1 (i.e. dynamic FK forces).

Let (ηi , ydyni ) denote an input-output pair of signals
for system (21). We define the so-called empirical
transfer function estimate (ETFE) Hi : C0 → C,
jω �→ Hi ( jω), for each input-output pair, in terms
of the expression

Hi ( jω) = Ni ( jω)

Y dyn
i ( jω)

, (22)

with i ∈ NQ , and where Ni : C0 → C and

Y dyn
i : C0 → C denote the Fourier transform of ηi

and ydyni , respectively. Via the set of ETFE mappings

H = {Hi }Q
i=1, one can readily obtain the so-called

average ETFE, H̄ , computed with the aim of building
a low-variance set to use as input to the frequency-
domain identification algorithm (see e.g. [63]). The
explicit computation of H̄ is simply given by:

H̄( jω) = 1

Q

Q∑

i=1

Hi ( jω). (23)

Recall that the ultimate objective of the proposed
system identification procedure is to obtain a paramet-
ric form which approximates the behaviour of Σdyn

in terms of a representative linear structure Σ̃dyn, as
in equation (21), based upon the characterisation pro-
vided by the average ETFE (23), which is computed
exclusively in terms of input-output data. Before dis-
cussing the method from an algorithmic perspective,
and without any loss of generality, let us re-write the
average ETFE in (23) as

H̄( jω) = e jωtc H̄c( jω), (24)

where the term e jωtc denotes the frequency-domain
equivalent of the time-shift (advance) corresponding
with the dynamic FK system (see Remark 12) and,
hence, H̄c only represents the causal component of H̄ .

The strategy considered here, to compute a state-
space structure (as in (21)), from the average ETFE
(23), is that of subspace-based identification [79]. In
particular, we consider the methodology outlined in
[78], which computes the associated Hankel matrices
directly from frequency-domain data (i.e. the input-
output information encoded in the mapping H̄ )4. Fur-
thermore, we combine such a methodology with an
iterative procedure to compute an estimate of the corre-
sponding time-advance tc. The proposed methodology
is summarised in Algorithm 2, from a systematic per-
spective.

Algorithm 2 (Dynamic FK approximation) Let the
input set U = {ηi }Q

i=1 be such that each ηi is a suit-
ably selected multisine signal fidi . Let Tc = {tci }P

i=1 ⊂
[al , ah] ⊂ R+ be a set of trial time-shifts, with al suffi-
ciently small, and ah and P ∈ N sufficiently large. Let
Σ̃ denote an approximated state-space system, com-
puted from an average ETFE H̄, with a (finite) user-
selected order (dimension) ñ, and let H̃ denote its asso-
ciated transfer function.

4 We refer the interested reader to [79] for a full description of
subspace-based system identification methods.
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then:
Compute the set of outputs Y = {ydyni }Q

i=1;

Compute the set H = {Hi }Q
i=1 with Hi as in (22);

Compute the average ETFE H̄ as in (23);
for i = 1 : P do

Tc = tci ;
H̄c = e− jωTc H̄( jω);
Σ̃i = identify(H̄c, ñ);
Ei = ‖e jωTc H̃i ( jω) − H̄( jω)‖2;

end
Choose Σ̃dyn = Σ̃I with I = argmini {Ei };
end

The strategy in Algorithm 2 can be briefly described
as follows. Firstly, the user selects a suitable set of mul-
tisine input signals (see Sect. 3.1) and collects the cor-
responding dynamic FK output data for each defined
free-surface elevation. The resulting input-output set is
then used to construct the associated average ETFE as
in (23). Secondly, and since the value for tc in (21) is,
in general, unknown, a finite-set of trial values Tc is
chosen. For each trial value contained in the set, H̄c is
constructed (as in equation (24)), and a corresponding
approximating state-space structure Σ̃ of order (dimen-
sion) ñ is computed using subspace techniques. Note
that the latter step is indicated in Algorithm 2 with the
‘function’ identify(· , ·). Finally, the system Σ̃i produc-
ing the lowest fitting error Ei , together with its associ-
ated tc value, is selected as the linear representative
approximating model Σ̃dyn, as in (21).

To finalise this section, and provide a correspond-
ing overview of the approximation framework, we pro-
vide a schematic illustration of the final structure for
the complete approximating system for nonlinear FK
forces in Figure 3, including both static and dynamic
effects. Note that, as depicted in Figure 3, the ultimate
objective is to provide a (computationally and repre-
sentationally) convenient approximation of the total FK
force yFK = yst + ydyn, via ỹFK = ỹst + ỹdyn.

3.4 Control-oriented model

With the proposed approximating structures for both
static and dynamic FK effects, computed in Sects. 3.2
and 3.3, respectively, one can provide a control-
orientedmodel Σ̃W, approximating the nonlinearWEC
dynamics ΣW in (1). To achieve such an objective, we
take the steps detailed in the following paragraphs.

We begin by noting that, without any loss of gener-
ality, the mapping f̃ stFK, characterising nonlinear static

Fig. 3 Schematic representation of the target, and approximated,
FK systems

FK forces within the presented approximation frame-
work, can be ‘separated’ as

f̃ stFK = f̃ stFKl
+ f̃ stFKnl

, (25)

where

f̃ stFKl
(z) = P ∂Φ

∂z

∣
∣
∣
∣
(0,0)

z,

f̃ stFKnl
(η, z) = f̃ stFK(η, z) − f̃ stFKl

(z),

(26)

i.e. into linear f̃ stFKl
, and nonlinear f̃ stFKnl

, contributions,
respectively.

Remark 13 The linear map f̃ stFKl
depends only on z:

From the physical laws governing the WEC dynamics,

it is possible to show that ∂Φ
∂η

∣
∣
∣
(0,0)

= 0, and hence the

linear part of the static FK force depends only upon the

device displacement. In fact, the coefficientP ∂Φ
∂z

∣
∣
∣
(0,0)

acts exactly as the well-known hydrostatic stiffness
coefficient, commonly usedwithin linear potential flow
theory (see e.g. [29]).

With the explicit nonlinear contribution of the
approximated static FK force, made available via equa-
tions (25) and (26), it is possible to ‘condense’ the non-
linear characteristics of the WEC system (1) in terms
of a C1 function gW : R × R × R → R, defined as

gW(η, z, ż) = fv(ż) + f̃ stFKnl
(η, z), (27)

which also includes the viscous effects, modelled via
Eq. (3).

With respect to dynamic FK forces, and aiming to
be consistent with the mathematical description con-
sidered for the diffraction force in (4), we write the
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output of the approximating system Σ̃dyn in terms of
its associated impulse response function, i.e.

f̃ dynFK (η) = k̃dynFK ∗ η, (28)

where k̃dynFK : R+ → R, k̃dynFK ∈ L2(R), can be directly
defined in terms of the triple of matrices (F,G, H)

composing (21) as

k̃dynFK (t) = HeF(t+tc)G. (29)

Using the results presented up until this point, the
approximating WEC dynamical equation can be con-
veniently written as

Mz̈ = −kr∗ ż +
(

kd + kdynFK

)

∗ η + gW(η, z, ż) − fu, (30)

withM = m +m∞. Note that the linear and nonlinear
contributions are explicitly separated in equation (30).

Remark 14 The function kd + kdynFK resembles the so-
called excitation force kernel, commonly employed
within linear potential flow theory models, though with
a fundamental difference: kdynFK is obtained here in terms
of a representative linear model (see Sect. 3.3), as
opposed to linear potential flow theory, where the cor-
responding model is computed under the assumption
of infinitesimally small motion of the device about the
zero-equilibrium .

Finally, and to provide amodel compatible with control
design (as approached in Sect. 4), let x = [z, ż]ᵀ ∈ R2

be the state vector associated with the WEC system.
The approximating control-oriented model can be then
expressed as

Σ̃W :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = Ax+B
(
−kr∗Cż x +

(
kd + kdynFK

)

∗ η − fu) + g(η, x) = f (x, η, fu),

y = Cż x = h(x) = ż,

(31)

with the map g : R × R2 → R2 given by

g(η, x) = B gW(η,Cz x,Cż x), (32)

and where the pair of matrices (A, B), defining (31),
can be straightforwardly defined as

A =
[

0 1

M−1P ∂Φ
∂z

∣
∣
∣
(0,0)

0

]

, B =
[

0
M−1

]

. (33)

Note that the output of (31) is now fixed to be the
device velocity, given its relevance within the defini-
tion of the associated energy-maximising optimal con-
trol problem for WECs (see Sect. 4 for further detail).

Remark 15 [On the stability of Σ̃W] It is straight-
forward to show that (x, η, fu) = (0, 0, 0) is an
equilibrium point for (31). Furthermore, given that
∂g(x,η)

∂x |(0,0) = 0, with g as in (32), the local stability
properties of the zero-equilibrium of Σ̃W are governed
by the linearised equation

ẋ = Ax−B (kr∗Cż x) . (34)

As it is well-known in the marine engineering commu-
nity, the Volterra Eq. (34) can be shown to be asymp-
totically stable using dissipativity arguments, for any
meaningful values of the parameters involved, and radi-
ation kernel kr (see e.g. [29,75]).

4 Moment-based optimal control

Based upon the model derived via the framework pre-
sented throughout Sect. 3, we now consider the design
of a nonlinear moment-based optimal controller for a
WEC system, subject to nonlinear FK effects. In par-
ticular, we present, in this paper, a generalisation of
the moment-based control results presented in [27],
by incorporating a general class of nonlinear wave-
dependent effects within the computation of the cor-
responding optimal control law. Before getting into
the specific details characterising the proposed control
strategy, we formally introduce the energy-maximising
OCP associated with the WEC control problem.

As discussed throughout Sect. 1, the control objec-
tive for wave energy systems is that of maximising
energy extraction from the incoming wave field, via a
suitably designed optimal control law f optu , injected
into the system via the so-called power take-off (PTO)
system (i.e. actuator). To be precise, the associated
OCP can be written in terms of an objective function
J : Uu → R, u �→ J (u), defined (see e.g. [18,67])
as

J ( fu) = 1

T

∫

Ξ

fu(τ )ż(τ )dτ

= 1

T

∫

Ξ

fu(τ )y(τ )dτ, (35)

where y is as defined in (31), Ξ = [0, T ] ⊂ R+, and
Uu denotes the set of admissible inputs.
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In addition to the control objective function posed in
(35), theWECOCP considers both state and input con-
straints, aiming to secure energy-maximisation from
incomingwaves,while guaranteeing the intrinsic safety
limits associated with both WEC system (state), and
actuator (input), components. Such a constraint set C
can be formally written as

C :

⎧
⎪⎨

⎪⎩

|z(t)| ≤ Zmax,

|ż(t)| ≤ Vmax,

|u(t)| ≤ Umax,

(36)

where the set {Zmax, Vmax,Umax} ⊂ R+ denotes the
specific values for each defined limit. The full OCP for
wave energy systems can be then posed, in terms of
both (35) and (36), as follows: Find an optimal control
law f optu : Ξ → R such that

f optu = argmax
u∈U

J (u),

subject to:

WEC nonlinear dynamics Σ̃W in (31),

State and input constraint set C in (36).

(37)

The OCP (37) is, naturally, posed in an infinite dimen-
sional function space, which motivates the consider-
ation of suitable tools to find an approximate solu-
tion. We consider, in this paper, a moment-based
approach to compute an approximate solution of (37),
by exploiting the system-theoretic concept of amoment
(see e.g. [2,3,28]). Moments are mathematical objects
which, under certain assumptions, provide a conve-
nient parameterisation of the steady-state behaviour
of system (37), for a given class of inputs, including
those characterising the WEC energy harvesting pro-
cess. Such a parameterisation can be explicitly used to
transcribe the OCP (37) into a finite-dimensional non-
linear program (NP), i.e. in a direct optimal control
fashion (see e.g. [65,68]), as detailed in the following
sections.

4.1 Direct transcription via moments

To be precise, within a moment-based approach, both
external inputs, η and fu, are described in implicit form
(see e.g [2,27,28]). In particular, we describe the exter-
nal (uncontrollable) input affecting (31), i.e. the free-

surface elevation η, in terms of a finite dimensional
signal generator5:

ξ̇ = Sξ,

η = Lηξ,

S =
d⊕

p=1

[
0 pω0

−pω0 0

]

,

(38)

with initial condition ξ(0), and where ξ(t) ∈ Rν ,
S ∈ Rν×ν , and Lᵀ

η ∈ Rν , with ν = 2d, d > 0 an
integer. The constant ω0 = 2π/T , with T as in (35),
denotes the so-called fundamental frequency of (38)
(and, correspondingly, of the free-surface elevation η).
Note that Eq. (38) unveils one of the fundamental dif-
ferences between the approach presented in this paper,
and that in [27]; given its role in the definition of the
nonlinear map g in (31), the implicit description of
(38) directly takes into account the free-surface ele-
vation η, while [27], which assumes fully linear FK
effects, utilises a signal generator to describe the so-
called excitation force (see Remark 14), hence ignor-
ing any potential nonlinear coupling between η and x
in (31).

Remark 16 We assume, throughout this paper, that
complete knowledge of η is available for t ∈ Ξ , i.e. the
output vector Lη in (38) is known, for any given initial
condition ξ(0). Note that this is done without any loss
of generality, and simply with the objective of avoid-
ing the introduction of an excessively complex notation
throughout the reminder of this paper. As a matter of
fact, an estimate of η can be straightforwardly incor-
porated into the presented framework, by following an
analogous procedure to that derived in the receding-
horizonmoment-based control framework presented in
[23].

Remark 17 The implicit description of (38) is effec-
tively consistent with standard theory in water waves,
i.e. the image of the free-surface elevation, η(t), can be
described consistently (in a statistical sense, see [52])
as the sum of ν harmonics of a fundamental frequency
ω0, for any ν and T sufficiently large. If T does not
fulfil this last property, such as in the case of the practi-
cal receding-horizon implementation ofmoment-based
control (see [23]), apodisation (i.e. windowing [64])

5 We note that, within the theory of nonlinear output tracking and
regulation, system (38) is also referred to as exogenous system,
see [44].
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techniques can be applied to η within the set Ξ to
guarantee the well-posedness of a T -periodic exten-
sion of η, and hence the implicit form of (38) can be
adopted without any loss of generality6. This is fur-
ther discussed, from an implementation perspective, in
Sect. 5.

Remark 18 The selection of a real block-diagonal form
description of (38) is done without any loss of general-
ity, and merely for representational convenience. Note
that the same class of functions, i.e. state trajectories
{ξi (t)}νi=1, can be generatedwith anymatrix S such that
λ(S) = {±pω0}d

p=1 ⊂ C0.

As has been demonstrated and discussed in [27], and
even though the external uncontrollable input η can be
effectively expressed as in (38), the control force (to
be designed via (37)) can be potentially composed of
a higher number of harmonics d + d̃ in the general
solution case. As a matter of fact, this ‘augmented’
representation for the control input plays a fundamen-
tal role in the quality of the approximation procedure
adopted in this paper, as further discussed throughout
the reminder of this section. Such a situation can be for-
malised via the so-called extended signal generator:

ξ̇ = Sξ,

fu = Luξ,

η = Lηξ,

S = S ⊕
⎛

⎝
d̃⊕

p=1

[
0 (d + p)ω0

−(d + p)ω0 0

]
⎞

⎠ ,

(39)

with S ∈ Rι×ι, ι = 2(d + d̃), and where the set of
vectors {Lu

ᵀ
, Lη

ᵀ
, ξ(t)} ⊂ Rι. Note that, given the

nature of the matrix S in (39), the output vector Lη is
merely the result of an appropriate inclusion, i.e.

η = Lηξ = [
Lη 0

]
ξ = Lηξ, (40)

with the specific inclusion map being I : R1×ν ↪→
R1×ι, I(Lη) �→ Lη. Furthermore, the initial condi-
tion of (39) can be defined in terms of ξ(0) simply as
ξ(0)ᵀ = [ξ(0)ᵀ ξ

ᵀ
e (0)], with any vector ξe(0) ∈ R2d̃ .

Suppose, from now on (and without any loss of gen-
erality), that the initial condition of the extended signal
generator (39) is set to ξ(0) = ει, so that the pair of

6 The reader is referred to [23] for the receding-horizon imple-
mentation of moment-based control.

matrices (S, ξ(0)) is effectively excitable7. Then, given
the nature of theWECsystem (31), there exists a locally
well-defined mapping π : Rι → R2, which solves the
nonlinear partial differential equation

∂π

∂ξ
Sξ = f (π(ξ), Lηξ, Luξ), (41)

and the steady-state responsemap of Σ̃W, driven by the
signal generator of (39), is xss = π ◦ ξ , for any fixed
state-trajectory ξ(t).We nowhave the tools to provide a
formal definition of a moment, following, for example,
[2]; from now on, we refer to the mapping h ◦ π as the
moment of system (31) at the signal generator (39).

Remark 19 Local existence and uniqueness of π in
(41) can be proved via centre manifold theory (see [44,
Chapter 8]), and is guaranteed both via the Poisson sta-
ble nature of the extended signal generator (39), and
the Lyapunov stability properties of Σ̃W in (31) (see
Remark 15). The interested reader is referred to, for
instance, [44, Chapter 8] and [45], for a thorough dis-
cussion on thewell-posedness conditions for the partial
differential equation of (41).

Remark 20 For any fixed trajectory ξ(t), the moment
of system (31) at the signal generator (39) coincides
with the steady-state output response of Σ̃W driven by
(39), i.e. yss(t) = (h ◦ π)(ξ(t)).

It should hopefully be clear at this point that, within
the assumptions and definitions adopted within this
paper, the definition of moments, and the steady-state
output response of system (31), are in a one-to-one
relation. In particular, the mapping h ◦ π provides a
complete account of the steady-state output of Σ̃W, for
any given η(t) and fu(t). We exploit such a parame-
terisation to approximate the solution of the OCP (37)
in terms of the steady-state output map of the WEC
system (31), as detailed in the following paragraphs.

We begin by noting that, though (local) existence
and uniqueness of the mapping π , the solution of (41),
is indeed guaranteed under the stated framework (see
Remark 19), the computation of an analytical (closed-
form) solution is far from trivial, if at all possible. In
-other words, tomake practical use of the parameterisa-
tion of the steady-state response of (31), viaRemark 20,

7 Excitability, which is required to guarantee a well-posed defi-
nition of moments (see e.g. [2,27,28]), refers to, with additional
technical assumptions, a condition of persistency of excitation
for the signal generator (39), see [54]
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a tailored approximationmethod is required to compute
the corresponding moment h ◦ π . In the light of this,
we consider the approximation procedure proposed in
[27], and extend such a technique to effectively include
the (input-dependent) nonlinear FK effects in the com-
putation of the corresponding approximating moment.

In particular, [27] defines an approximation of h ◦π
by directly exploiting the nature of the extended signal
generator of (39); for any fixed trajectory ξ(t), and set
of output vectors {Lη, Lu}, the moment of system (31)
can be approximated in terms of the solution of (39) as

(h ◦ π)(ξ(t)) ≈ (h ◦ π)(ξ(t)) = Y ξ(t), (42)

where Y = CżΠ (since h ≡ Cż in the output map of
(31)),withΠ ∈ R2×ι the solutionof the set of algebraic
equations

〈
R(Π, Lη, Lu, t), δ(t − ti )

〉 = 0, (43)

with Tι = {ti }ιi=1 ⊂ Ξ a set of uniformly-distributed
collocation points, and where the residual map R in
(43) is defined as

R := Π Sξ(t) − f (Πξ(t), Lηξ(t), Luξ(t)). (44)

Remark 21 Unlike the case posed in [27], where both
the control force and so-called excitation force are
regarded as a linearly combined input to the WEC sys-
tem, the computation of the approximating moment Y
via (43) now depends upon the free-surface elevation
η in an explicit form, i.e. two separate external inputs
are being considered to solve for Y .

Even though themap f , characterising the dynamics
of the WEC system under nonlinear FK effects in (31),
is of an integro-differential class, the system of equa-
tions (43) can be conveniently re-expressed in matrix
form by virtue of moment-based theory, as discussed
in the following. In particular, we begin by noting that,
since {kr, kd, kdynFK } ⊂ L2(R), the convolution opera-
tions in (31) can be written [21,25], in steady-state,
as

kr∗ y �→ kr∗ Y ξ = YMrξ,

kd∗ η �→ kd∗ Lηξ = LηMdξ,

kdynFK ∗ η �→ kdynFK ∗ Lηξ = LηM
dyn
FK ξ,

(45)

where the set of (constant) matrices {Mr,Md,M
dyn
FK }

⊂ Rι×ι, which depends upon the spectra λ(S), can be
defined as

Mr =
d+d̃⊕

p=1

[ �(Kr(pω0)) �(Kr(pω0))

−�(Kr(pω0)) �(Kr(pω0))

]

,

Md =
d+d̃⊕

p=1

[ �(Kd(pω0)) �(Kd(pω0))

−�(Kd(pω0)) �(Kd(pω0))

]

,

M
dyn
FK =

d+d̃⊕

p=1

[
�(K dyn

FK (pω0)) �(K dyn
FK (pω0))

−�(K dyn
FK (pω0)) �(K dyn

FK (pω0))

]

,

(46)

where the mappings Kr : R → C, Kd : R → C, and
K dyn
FK : R → C, represent the (well-defined) Fourier

transform of kr, kd, and kdynFK , respectively.
Furthermore, and since, for any t ∈ Ξ , the mapping

f in (31) is continuous, i.e. f ∈ C0, then the inner-
product operation between f and δ in Ξ is such that
〈 f, δ(t − ti )〉 = f (ti ). This allows for the definition of
the following set of matrices:

Ωᵀ =
⎡

⎢
⎣

ξ(t1)ᵀ
...

ξ (tι)ᵀ

⎤

⎥
⎦

ᵀ

,

G(Π, Lη)
ᵀ =

⎡

⎢
⎣

g(Πξ(t1), Lηξ(t1))ᵀ
...

g(Πξ(tι), Lηξ(tι))ᵀ

⎤

⎥
⎦

ᵀ

,

(47)

where G(Π, Lη) ∈ R2×ι and Ω ∈ Rι×ι. Finally, with
thematrices introduced in (47), and the definition of the
steady-state convolution ‘equivalents’ derived in (46),
the set of algebraic equations posed in (43) can be writ-
ten in matrix form, i.e.

Π S − AΠ + BCżΠMr − BLη

(

Md + M
dyn
FK

)

+ BLu − G(Π, Lη)Ω
−1 = 0.

(48)

Remark 22 The existence of a set of collocation points
Tι such that 0 �= λ(Ω), i.e. Ω−1 is well-defined, is
always guaranteed via the excitability property of the
pair (S, ξ(0)) (see [54]).

Remark 23 If the set of collocation points (time
instants) Tι is chosen such that {tk ∈ Tι | tk = −T/2 +
T k/ι, ∀k ∈ Nι}, then the collocation approach, adopted
in this paper to derive (48), identically coincides with
the so-called Galerkin method [9,30]. This, combined
with the locally exponential stability of the WEC sys-
tem Σ̃W (see Remark 15), has the following set of
implications: (a) The system of equations (48) always
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admits a solution for any ι sufficiently large, and (b)
the approximated moment converges uniformly as the
number of components describing the extended sig-
nal generator (39) increases, i.e. (h ◦ π)(ξ) = Y ξ →
(h ◦ π)(ξ) as ι → +∞ (see [76]).

Going one step further with the analysis of the sys-
tem of equations (48), and given the intrinsic rela-
tion between the state-variables z (displacement) and
ż (velocity) in (31), the algebraic equation (48) can
be written in terms of Y (see “Appendix 1” for a full
derivation), i.e.

Y
ᵀ + ΓηLη

ᵀ − ΓuLu
ᵀ + ΓG

[
G(Y , Lη)

] = 0, (49)

where the set of matrices {Γη, Γu, ΓG} ⊂ Rι×ι are
defined as

Γη = (Iι ⊗ Cż)Γ
−1
r (Md

ᵀ + Mdyn
FK

ᵀ
⊗ B),

Γu = (Iι ⊗ Cż)Γ
−1
r (Iι ⊗ B),

ΓG = (Iι ⊗ Cż)Γ
−1
r (Ω−1ᵀ ⊗ I2),

Γr = (S ⊗ I2) + (Iι ⊗ A) − (Mr
ᵀ ⊗ BCż),

(50)

with Γr ∈ R2ι×2ι.

Remark 24 The following equivalent condition,

Lu
ᵀ = Γ −1

u Y
ᵀ + Γ −1

u ΓηLη
ᵀ

+Γ −1
u ΓG

[
G(Y , Lη)

]
, (51)

follows trivially from Eq. (49), since 0 /∈ λ(Γu), due
to the (local) internal stability of system (31) (see the
arguments posed in [25,26]).

As discussed at the beginning of Sect. 4, the approx-
imated moment (h ◦ π)(ξ) = Y ξ , computed via
Eq. (49) (or, equivalently, Eq. (51)), can be effectively
used to approximate the solution of the energy max-
imising OCP (37), for wave energy systems under non-
linear FK effects, in the following sense. Given the
inherent one-to-one relation between moments and the
steady-state output response of (31), the OCP (37)
can be mapped (momentarily without considering the
set C—see Sect. 4.2 for its effective incorporation),
in steady-state, to the following moment-based finite
dimensional NP: For a given free-surface elevation
η = Lηξ , solve

Lu
opt = arg max

Lu
ᵀ∈Rι

1

T

∫

Ξ

Y ξ(t)Luξ(t)dt,

subject to:

Y
ᵀ + ΓηLη

ᵀ − ΓuLu
ᵀ + ΓG

[
G(Y , Lη)

] = 0,

(52)

where the effective optimal control input is f optu =
Lu

opt
ξ , with ξ solution of (39).

Remark 25 Equation (52) arises by setting y �→ Y ξ

and fu �→ Luξ in (37), and by replacing the corre-
sponding (dynamic) integro-differential WEC equality
constraint (31) with the algebraic equation (49), which
describes the steady-state output behaviour of WEC
system (31) in terms of the corresponding approxi-
mated moment. Furthermore, note that, if ι → ∞, then
the algebraic equality constraint in (52) exactly repre-
sents the steady-state output response of (31) driven by
(39) (see also Remark 23).

The (now transcribed) finite-dimensional NP (52),
which is a mixed optimisation problem in {Y , Lu}, can
be further simplified by noting that, for any admissible
pair (Y , Lu), the following equality condition
∫

Ξ

Y ξLuξdt = Y

(∫

Ξ

ξξ
ᵀ
dt

)

Lu
ᵀ = T

2
Y Lu

ᵀ
, (53)

holds. Equation (53), together with the equality derived
inRemark24, directly implies that the optimalmoment-
based control force f optu = Lu

opt
ξ in (52) can be equiv-

alently computed as

Lu
optᵀ = Γ −1

u

(
Y
optᵀ + ΓηLη

ᵀ

+ ΓG

[
G(Y

optᵀ
, Lη)

] )
,

(54)

with Y
opt

the solution of the NP

Y
opt = arg max

Y
ᵀ∈Rι

1

2
YΓ −1

u Y
ᵀ + 1

2
YΓ −1

u ΓηLη
ᵀ

+ 1

2
Γ −1
u ΓG

[
G(Y , Lη)

]
.

(55)

We now explicitly provide a set of important remarks,
which describe and discuss the nature of the moment-
based solution proposed in (54)-(55).

Remark 26 For any given Lη, the optimisation pro-
cedure described in (54)-(55) is carried out over the
approximated moment Y only, and ‘translated’ to the
effective optimal control force f optu via thewell-defined
algebraic relation (54) (see also Remark 24)8.

8 The existence of a map between the (controlled) input and out-
put is intrinsically related to the fact that the velocity of theWEC
system y = ż constitutes a flat output for (31). The interested
reader is referred to, for example, [66] for a detailed account on
the concept of differential flatness.
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Remark 27 As in the case discussed in [27], the result-
ing moment-based NP in (54) is constructed as the
sum of a quadratic function, and a nonlinear ‘pertur-
bation’ term, which explicitly depends on the map-
ping g in (32). Note that this is indeed a highly desired
representation, since the existence of a global energy-
maximising control solution can be guaranteed under
mild assumptions (see Remarks 28 and 29 below).
In other words, with the approximation framework
for nonlinear FK effects, and the subsequent control-
oriented model proposed in Sect. 3, we can retain the
benefits and properties of the nonlinear moment-based
strategy in [27], even under the presence of nonlinear
FK forces.

Remark 28 The quadratic term in (54), characterised
by the Hessian matrix H = Γ −1

u + Γ −1ᵀ
u , coincides

with that derived in [25,27], and is always strictly con-
cave, i.e. λ(H ) ⊂ R−/0.We do note that, unlike [27],
which does not consider the potential existence of non-
linear FK effects, the nonlinear term in (54) now explic-
itly depends upon the implicit form description of the
external uncontrollable input, i.e. the free-surface ele-
vation η = Lηξ .

Remark 29 Given the concave nature of the quadratic
term in (55), if, for any admissibleY and Lη, the nonlin-
ear map (Y , Lη) �→ G(Y , Lη) is bounded, then the NP
defined in (55) always admits a globally optimal solu-
tion9. This, naturally, allows the utilisation of efficient
numerical optimisation routines to compute a solution
for the energy-maximising optimal control law (54).

4.2 State and input constraints

The set of state and input constraints C , defined in
Eq. (36), can be incorporated into the optimisation
procedure in (55) by pursuing a collocation approach.
In particular, by choosing an appropriate set TC =
{ti }NC

i=1 ⊂ Ξ , where the cardinality NC is a design
parameter (see also Sect. 5), the following map (see
“Appendix 2” for a full derivation)

C �→
⎧
⎨

⎩

⎡

⎣
Aᵀ

z

Aᵀ
ż

Aᵀ
u

⎤

⎦ +
⎡

⎣
0
0

Gu(Y )ᵀ

⎤

⎦ Y
ᵀ ≤

⎡

⎣
Bᵀ

z

Bᵀ
ż

Bᵀ
u

⎤

⎦ , (56)

9 This statement follows from the so-called Γ -convex nature of
the objective function in (54) when the map G is bounded. The
interested reader is referred to, for example, [60–62] for further
detail.

with

Az = �
ᵀ

S
−1ᵀ

,

Aż = �
ᵀ
,

Au = �
ᵀ
Γ −1
u ,

Bz = Zmax1NC ,

Bż = Vmax1NC ,

Bu = Umax1NC − AuΓηLη
ᵀ
,

Gu(Y ) = AuΓG
[
G(Y , Lη)

]
,

Λ = [
ξ(t1) · · · ξ(tNC )

]
,

� = [
Λ −Λ

]
,

(57)

can be directly incorporated into (55), to explicitly take
into account the set C in (36) within the adopted opti-
mal control framework.

Remark 30 The pairs of matrices (Az,Bz) and (Aż,

Bż) characterise the state constraints in (36), specifi-
cally those related to displacement and velocity, respec-
tively. Note that, within the adopted framework, such
constraints are linear in the optimisation variable Y ,
which is highly convenient from a computational effi-
ciency perspective (see e.g. [8,10]). In contrast, the
inequality relation characterising the input (control)
constraint is composed of a linear contribution, char-
acterised by the pair (Au,Bu), and a nonlinear map
Y �→ Gu(Y ), consistent with the nature of the optimi-
sation problem (55).

5 Case study

This section presents a case study to illustrate the results
and propositions presented in Sects. 3 and 4, in an inte-
grated fashion; we first develop a data-based control-
oriented model of a WEC system subject to nonlin-
ear FK effects, and subsequently use such a model for
moment-based optimal control design, aiming to effec-
tivelymaximise energy extraction. In particular, to fully
illustrate the features of the proposed framework, we
consider a spherical heaving point absorber WEC sys-
tem (seeFigure 4), as extensively studiedwithin nonlin-
ear FK academic research, see e.g. [36,38]. The selec-
tion of such a geometry is not onlymotivated by its non-
uniform cross-sectional area, which clearly emphasises
the relevance of nonlinear FK effects within the mod-
elling procedure, but also by the existence of an ana-
lytical solution for the nonlinear static FK force, i.e.
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Fig. 4 Schematic illustration of the spherical heaving point
absorber WEC system (right), and its corresponding radiation
and diffraction frequency-domain characteristics (left)

the map f stFK, hence providing an exact benchmark to
compare the procedure, proposed in Sect. 3.2, against.
Figure 4 also provides a linear frequency-domain char-
acterisation of both radiation (top) and diffraction (bot-
tom) impulse response functions associated with the
considered heaving point absorber device, by means of
a corresponding Bode plot, computed using the open-
source BEM solver Nemoh [5].

Regarding specific sea-state conditions, we consider
that the WEC system in Figure 4 is subject to irregu-
lar waves stochastically characterised via JONSWAP
spectra (see [41]). In particular, we consider sea-states
with a significant wave height Hw = 2.5 [m], typical
peak period Tw ∈ [2, 4] [s] (which fully covers the
main operational range for this specific device), and a
fixed peak-enhancement parameter of γ = 3.3. From
now on, whenever an irregular sea-state is considered
for performance assessment, the length (in seconds)
associated with the time-trace of the (randomly gen-
erated) free-surface elevation, i.e. η(t), is set to 1600
[s]. Note that such a value corresponds with more than
400 typical wave periods for each possible Tw ∈ [2, 4]
[s], hence guaranteeing statistically consistent results
for each considered operating condition.

The remainder of this section is organised as follows.
Firstly, Sect. 5.1 presents the application of the data-
based control-oriented modelling framework, intro-
duced in Sect. 3, for both static, and dynamic non-
linear FK effects. Subsequently, Sect. 5.2 discusses

the moment-based control design procedure, presented
in Sect. 4, based upon the computed control-oriented
WEC system, including a detailed performance assess-
ment of such a proposed control framework.

5.1 Data-based control-oriented modelling

Recall that the control-oriented modelling framework,
proposed in Sect. 3, is based exclusively on input-
output data, generated by a suitable numerical non-
linear FK solver. In this paper, we consider the open-
source toolbox Nlfk4all [32,34], which provides an
accurate, yet efficient (from a numerical standpoint),
solution methodology for both static, and dynamic, FK
effects. Different inputs are supplied to the software,
according to each of the data-based modelling proce-
dures discussed in Sect. 3, to generate a correspond-
ing representative set of outputs, explicitly required for
nonlinear FK identification.

We begin this section by describing the approxima-
tion of static FK effects, as proposed in Sect. 3.2, and, in
particular, Algorithm 1. For the corresponding approx-
imation space, i.e. the set of functionsP = {φ j } char-
acterising f̃ stFK in (13), we choose the trial set

{φi (z, η)}16i=1 = {z, z2, z3, η, ηz, ηz2, ηz3, η2, η2z,

η2z2, η2z3, η3z, η3z2, η3z3}, (58)

which corresponds with the first 16 terms of the poly-
nomial series expansion of f stFK about (z, η) = (0, 0).
With respect to the test free-surface elevation η, used as
persistently exciting input to the nonlinear FK solver to
produce the corresponding set of representative identi-
fication data, we select the multisine signal fid specif-
ically illustrated in Figure 1 (see also Sect. 3.1). Note
that, as discussed throughout Sect. 3.2, given the static
nature of system Σ st

FK, a single multisine test input is
sufficient to characterise the proposed approximation
procedure.

With respect to the specifics of the iterative proce-
dure in Algorithm 1, we choose the sampling period,
characterising the (uniformly-spaced) set T w

k , as 0.1
[s] (which is well within the Nyquist-Shannon limit for
the multisine input signal considered), while the values
for {w, k0} are set as w = k0 = 50, which correspond
to a 5 [s] window for each iteration of the proposed
algorithm. The initialisation vector P0 ∈ R16, used as
a starting point for Algorithm 1, is chosen randomly,
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Fig. 5 EvolutionofAlgorithm1 for each corresponding iteration
(left), and final computed solution after convergence (right). Note
that the obtained solution exactly coincides with that derived
analytically in [36]

aiming to highlight the convergence capabilities of the
algorithm (see also Remark 11).

Figure 5 (left) illustrates the evolution of Algorithm
1 at each iteration k of the procedure, showing the
value of each coefficient characterising the approxi-
mated mapping f̃ stFK, according to the function space
defined via (58). Note that the algorithm effectively
starts the iterative procedure with random values, and
converges to a solution P , explicitly shown in Figure
5 (right), after ≈ 70 iterations. As a matter of fact, the
algorithm converges to the exact analytical solution for
the nonlinear static FK force effect characterising the
heaving point absorber WEC of Figure 4, as derived in
[36].

To finalise the presentation of the approximation
results regarding static nonlinear FK effects, and
explicitly illustrate the nature of the computed solu-
tion, Figure 6 shows the (sampled) time traces associ-
ated with the test (multisine) input η (right, top), and
resulting displacement z (right, bottom), together with
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Fig. 6 Time-traces associatedwith the test (multisine) input, and
resulting displacement (right), together with the corresponding
value for the static FK force, plotted alongside the computed
manifold
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Fig. 7 Set of trial inputs U used for the control-oriented mod-
elling of dynamic FK effects

the corresponding value for the static FK force f stFK
for each pair of samples (η, z), plotted alongside the
manifold computed via Algorithm 1.

Havingpresented the approximationof static nonlin-
ear FK forces via the proposed framework, we proceed
with the corresponding control-oriented modelling of
dynamic FK effects, following the procedure detailed
throughout Sect. 3.3, i.e. Algorithm 2. We begin such a
description byproviding an explicit account of the input
set U , i.e. the set of trial input signals to numerically
produce a set of representative dynamic FK outputs,
using the corresponding nonlinear FK solver. Recall
that, within the defined operating conditions, the device
is subject to stochastic wave inputs, i.e. irregular sea-
states, with Hw = 2.5 [m] and Tw ∈ [2, 4] [s]. Using
this information to construct the set of test inputs (to be
able to characterise such wave operating conditions),
we select Q = 4 different multisine signals, explic-
itly depicted in Figure 7. Each signal is specifically
designed to emulate, via a suitable selection of the
amplitudes and phases associated with each harmonic
component (see Sect. 3.1 and, specifically, Remark 4),
a ‘wave height’ of 2, 2.2, 2.5 and 2.7 metres, respec-
tively. The time length of each fid(t) is set to≈ 314 [s],
which corresponds to a fundamental frequency of 0.02
[rad/s]. The frequency band selected for the generation
of each multisine signal is set to [0.5, 5] [rad/s], which
is sufficient to cover the range of operating conditions
for the WEC under scrutiny.

Regarding the specific parameters characterising
Algorithm 2, the order (dimension) is set to ñ = 6,
which, as detailed in the reminder of this paragraph,
gives a good compromise between computational com-
plexity and model accuracy. The set of (uniformly-
spaced) trial time-shifts Tc, used to compute an esti-
mate of the (output) time-advance characterising the
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Fig. 8 Approximation error of Algorithm 2 as a function of the
time-advance tc

dynamic FK system, is such that Tc ∈ [0, 1]. As illus-
trated in Figure 8, which shows the approximation error
of Algorithm 2 as a function of different values in Tc,
the optimal time-advance is found to be tc = 0.7 [s].

The results of applying the proposed algorithm
are summarised in Figure 9, which presents a Bode
plot including each individual ETFE Hi ( jω), average
ETFE H̄( jω) (dotted grey), and frequency-response
mapping associated with the computed approximat-
ing model Σ̃dyn

FK (solid black), which clearly presents a
good fit with respect to the target H̄( jω). Furthermore,
aiming to highlight the difference between standard
linear hydrodynamic FK representations, and the pro-
posed approach, Figure 9 also includes the frequency-
response associated with the linear dynamic FK model
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70
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110
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Fig. 9 Bode plot of the corresponding average ETFE (dotted
grey), computed approximating model (solid black), and linear
BEM model (dashed red)

computed via BEM solvers (Nemoh for this particular
case).Note that there is a significant difference between
the linear BEM model, and the representative linear
structure computed via Algorithm 2, both in terms of
amplitude and phase descriptions. As a matter of fact,
for the latter characteristic (i.e. phase), the BEMmodel
does not effectively capture the time-advance, having
almost a zero-phase behaviour for the frequency range
characterising the device operating conditions. Such
misrepresentation of the phase can potentially cause
a pronounced loss in energy-maximising performance
for controllers based upon dynamic FK BEM models,
since accurate knowledge of the instantaneous phase of
the WEC system variables is fundamental in obtaining
a satisfactory control performance (see e.g. [23,81]).

Finally, and aiming to illustrate the approximation
quality when effectively combining both static, and
dynamic FK approximating models, Figure 10 offers
a comparison between target total FK force yFK, com-
puted via the nonlinear FK solver Nlkf4all, and that
obtained via the control-oriented approximation frame-
work proposed in this study, i.e. ỹFK, for a particular
realisation of a sea-state with Tw = 4 [s]. In partic-
ular, Figure 10 (top) explicitly shows the time traces
corresponding with target (dotted) and approximating
(solid) total FK forces, while Figure 10 (bottom) pro-
vides a measure of the approximation error, computed
as (yFK − ỹFK)/max(|yFK|), consistently showing a
satisfactory approximation performance.

5.2 Moment-based control design and assessment

Based upon the WEC control-oriented model, com-
puted in Sect. 5.1, we now present the correspond-
ing optimal control design for such a system subject
to nonlinear FK forces. In particular, we consider the
moment-based control design procedure detailed in
Sect. 4. Note that, throughout the reminder of this sec-
tion, the open-source toolboxNlfk4all is always con-
sidered as the high-fidelity simulation model, so as to
provide representative performance assessment results
for the corresponding controller.

Concerning the control design procedure specifics,
wefirst note that, aiming tohighlight the real-time capa-
bilities of the proposed control solution, implementa-
tion of the controller is performed in a receding-horizon
fashion (see the discussion provided in Remark 17),
following the framework presented in [23]. Though
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Fig. 10 Time-traces (top) corresponding with target (dotted) and approximating (solid) total FK force, and associated approximation
error (bottom)

Fig. 11 Schematic summary of the receding-horizon implementation procedure. The green dot denotes the current time instant

we do not provide a formal discussion on the the-
ory presented in [23], the implementation procedure
is briefly summarised in the following, so as to keep
this paper reasonably self-contained. In particular, Fig-
ure 11 shows a schematic diagram with an overview
of the main steps underlying the receding-horizon pro-
cedure to compute the corresponding control solution.
Starting with knowledge (exact or estimated) of the
free-surface elevation η for a time window of length
T (where energy absorption is to be maximised—see
the OCP (37)), we apply a windowing10 (apodisation)
mapping so as to smoothly bring η to zero at the bound-
aries, and hence the derivative of its periodic extension

10 The particular windowmapping considered in this paper is the
so-called Planck-taper function [51], which optimally preserves
the power spectrum characterising the free-surface elevation (see
also the discussion provided in [23]).

is sufficiently smooth. The ‘windowed’ η now automat-
ically admits an implicit form representation in terms
of the T -periodic signal generator (38), and hence the
framework presented in Sect. 4 can be directly consid-
ered, i.e. the OCP (37) can be transcribed to the finite-
dimensional moment-based NP (55), subject to the set
of mapped state and input constraints (56). The con-
trol solution is computed, the time window is shifted
by�trh seconds, and the procedure is repeated accord-
ingly.

5.2.1 Controller tuning and implementation

The time-window (horizon) length T directly defines
the fundamental frequency ω0 = 2π/T characterising
the extended signal generator (39), which, ultimately,
defines the approximation space for the optimal con-
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trol solution f optu . In particular, the larger the value of
T , the smaller the value of ω0, which implies a more
refined ‘frequency-step’ for the definition of the opti-
mal control solution. The selection of T is intrinsically
connected to the choice of ι in (55), i.e. the number of
harmonics of ω0 considered to construct the moment-
based representation of the optimal energy-maximising
control law and to cover the appropriate dynamic fre-
quency range. A large value of ι increases the qual-
ity of the control solution, although having a direct
impact on the computational complexity of the asso-
ciated moment-based NP, which is carried over Rι. In
practical scenarios, both T and ι can be tuned together,
in terms of a single parameter, i.e. the so-called cut-
off frequency ωc = ιω0, defining the largest multiple
of ω0 used to construct the extended signal genera-
tor (39). In particular, ωc can be set to a fixed value,
corresponding to the largest frequency in which the
stochastic description of the set of sea-states presents
significant energy components. With ωc fixed, and let-
ting ι = ceil(Tωc/2π), we approach the tuning proce-
dure via exhaustive (offline) simulation, by effectively
changing the time-window length T while monitoring
the trade-off between the value of the optimal con-
trol objective in (55) and the associated computational
demand. For the particular case study presented in this
section,we set the length of the time-window to T = 15
[s], together with ι = 20, i.e. we consider a total of 10
harmonics of the fundamental frequency ω0 = 2π/15
[rad/s] in the signal generator (39), and hence the corre-
sponding NP in (55) is carried out overR20. Note that
this implies a cut-off frequency for the computation of
the control solution of ωc ≈ 4 [rad/s].

The receding time step is set to�trh = 0.1 [s], which
corresponds to an order of magnitude below the typi-
cal sampling time of a full-scale WEC device (see e.g.
[23]), consistent with standard real-time requirements.
The set of collocation points TC , used to enforce the
mapped constraints in (56), is tuned by selecting a uni-
formly distributed set of time instants, with the same
time step chosen for �trh, i.e. 0.1 [s]. For the case
study presented in this section, the cardinality of TC
is hence NC = T/0.1 = 150. We do note that, while
one could consider a ‘larger’ time step for the constraint
collocation instants in order to enhance computational
requirements, this can potentially affect the constraint
enforcement capabilities of the controller.

Thevalues for each specific state and input limitation
are defined according to the technical specifications

300 320 340 360 380 400
10-2

10-1

Fig. 12 Computational time required by each corresponding
control calculation (indicated using ‘+’ markers) as a function
of the simulation time. The solid-green line shows the average
required computational time, while the solid-red line indicates
the real-time limit, defined by �trh

of the device under scrutiny. For this case study, we
set Zmax = 2.5 [m] (displacement constraint), which
prevents the device from either being fully submerged,
or fully out of the water, Vmax = 2.5 [m/s] (velocity
constraint), and Umax = 1.5 × 105 [N] (control force
constraint), for all the considered sea-states.

Regarding the specific computation of the associated
numerical solution, the algorithm used to solve the NP
(55), subject to the set of state and input constraints in
(56), is based on the interior-point method described
in [80], implemented in MATLAB Simulink. As can
be appreciated in Figure 12, the average computational
time required to compute the control solution corre-
sponding to each receding-horizon step (solid-green
line), i.e. each time window of length T , is ≈ 10−2

[s], which is one order of magnitude smaller than �trh
(solid-red line), hence always consistently achieving
real-time performance.

5.2.2 Performance assessment

Before effectively presenting and discussing perfor-
mance results, and aiming to provide a compari-
son of the proposed strategy against a benchmark
WEC controller, we introduce a well-established con-
trol methodology in the WEC literature, i.e. the
so-called ‘reactive control’, which is essentially a
proportional-integral (PI) control structure KPI achiev-
ing impedance-matching (see e.g. [19,74]) at a (suit-
ably selected) single interpolation frequency. To be pre-
cise, KPI : C → C, s �→ KPI(s), is defined as

KPI(s) = θ1 + θ2

s
, (59)
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Fig. 13 Frequency-response mapping for the optimal control
impedance (solid black), and each corresponding KPI (dotted),
designed to interpolate Iu at each considered peak period Tw ∈
[2, 4]

where the set {θ1, θ2} ⊂ R can be uniquely selected
to interpolate the so-called optimal control impedance
Iu, at a given interpolation frequency ωI (the reader is
referred to “Appendix 3” for the explicit definition of
the control impedance Iu and the corresponding inter-
polation procedure).

Aiming to consider a consistent benchmark com-
parison case, we consider an optimal PI control struc-
ture (59) for each specific sea-state, i.e. we re-design
the set {θ1, θ2} as a function of the specific operat-
ing condition, instead of simply fixing a single con-
troller KPI for all the considered sea-states. In partic-
ular, we design (59) to interpolate the optimal control
impedance (68) at ωI = 2π/Tw, for each considered
Tw ∈ [2, 4]. This situation is explicitly illustrated in
Figure 13, where the frequency-response of the optimal
control impedance is shown (solid black), alongside the
set of Bode plots characterising KPI (dotted), designed
to interpolate Iu for each corresponding (input) sea-
state condition. Note that, in (natural) resonance condi-
tions (Tw ≈ 3 [s]), the optimal KPI is simply a constant
value, i.e. it becomes passive.
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104

Fig. 14 Energy absorption results for both reactive PI (red), and
the proposed nonlinear moment-based controller (green)

Figure 14 displays the main performance results
obtained with the proposed nonlinear optimal moment-
based controller, based upon the control-oriented mod-
elling framework presented in this study. In particular,
Figure 14 shows energy absorption for both reactive
PI (red), and nonlinear moment-based control (green),
computed for the full time-length of each free-surface
elevation (1600 [s]). Note that the proposed controller
is able to significantly outperform the benchmark case
(which has been optimised for each particular typical
peak period), bymeans of a single set of control param-
eters, hence directly showing the capabilities of the
nonlinear moment-based approach to maximise energy
in a wide range of sea-states (i.e. operating conditions).

Finally, and aiming to further illustrate and dis-
cuss the comparative controller performance, Figure
15 shows applied control force (top), displacement of
the WEC device under controlled conditions (centre),
and instantaneous power (bottom), for a random real-
isation of a sea-state with Tw = 3.5 [s]. With respect
to effective control forces (top), a consistent differ-
ence in instantaneous phase canbe appreciated between
the optimised PI controller and the proposed nonlin-
ear moment-based controller, which leads to increased
displacement values under controlled conditions (cen-
tre), and a higher requirement (in average) of negative
(reactive) instantaneous power flow (bottom). In other
words, the proposed control solution is able to absorb a
significantly higher value of energy, while requiring, at
the same time, more conservative displacement ranges,
and less reactive power flow to achieve optimality.
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Fig. 15 Applied control force (top), displacement of the WEC
device under controlled conditions (centre), and instantaneous
power (bottom), for a random realisation of a sea-statewith Tw =
3.5 [s]

6 Conclusions

In this paper, an integrated framework for optimal
control of wave energy systems, subject to nonlinear
FK forces, is proposed, by fulfilling two fundamental
objectives.Wefirst derive a data-based control-oriented
modelling scheme, capable of computing suitablemod-
els for control purposes, by means of representative
input/output data, numerically obtained via an appro-
priate FK solver (Nlfk4all for our study). Both static
and dynamic FK effects are included within such a
modelling framework, by means of tailored approxi-
mation procedures. As illustrated in the case study pre-
sented in Sect. 5, the proposed algorithm for nonlinear
FK forces is capable of recovering the exact analytical
solution based solely on data, while the methodology
outlined in this study for the dynamic FK case delivers
a representative linear model which is effectively able

to capture the associated dynamics accurately, unlike
its BEM-based counterpart.

Secondly, we consider the computed model to
design an optimal moment-based controller, capable of
effectively maximising energy absorption for devices
under such nonlinear hydrodynamic forces. The pro-
posed controller is shown to outperform a benchmark
strategy, well-establishedwithin theWEC control liter-
ature, in terms of energy absorption (with an increase of
up to 3 times in performance), while effectively incor-
porating state and input constraints, and more con-
servative requirements in terms of operational space
(i.e. motion range), while requiring less reactive (bi-
directional) power flow to achieve optimality. Further-
more, by virtue of the efficient steady-state parameteri-
sation offered by moment-based theory, the solution of
the corresponding nonlinear program can be performed
in real-time, hence not only providing a solid theoret-
ical framework to achieve energy-maximisation, but
also a practical control solution to support the pathway
towards effective commercialisation of wave energy
systems.
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Appendices

Appendix 1: On the derivation of Eq. (49)

Webegin by recalling a well-known property of the vec
operator (see e.g. [43]), i.e. the following equivalence

[A1A2A3] = (Aᵀ
3 ⊗ A1) [A2] , (60)

for any A1 ∈ Rk×l , A2 ∈ Rl×m , and A3 ∈ Rm×n ,
holds.

An application of the vec operator to Eq. (48),
together with the property defined via (60), yields
(
−S

ᵀ ⊗ BCż

) [
Π

] +
(

Md + M
dyn
FK ⊗ B

)
[
Lη

]

− (Iι ⊗ B)
[
Lu

] +
(
Ω−1 ⊗ I2

) [
G(Π, Lη)

]
.

(61)

Equation (49), together with the corresponding matrix
definitions in (50), follow by multiplying (61) by (Iι ⊗
Cż), and noting that

(Iι ⊗ Cż)
[
Π

] = [
CżΠ

] = [
Y

] = Y
ᵀ
,

[
Lη

] = Lη
ᵀ
,

[
Lu

] = Lu
ᵀ
,

(62)

where we have used the fact that S = −S
ᵀ
. To finalise

proving the claim, we note that the map (Π, Lη) �→
G(Π, Lη) can be fully characterised in terms of Y , i.e.
the map11 (Y , Lη) �→ G(Y , Lη), by virtue of the fol-
lowing relation. Recall that the state-vector x of system
(31) is x = [z, ż] = [z y], and that, in steady-state con-
ditions, xss = Πξ and yss = CżΠξ = Y ξ . Following
[25,69], one can derive that

z =
∫

y dt �→ zss = Y S
−1

ξ, (63)

and hence Π can be fully written in terms of Y as

Π =
[

Y S
−1

Y

]

. (64)

Appendix 2: On the derivation of Eq. (56)

Recall the definition of the state and input constraints
C in (36). In steady-state conditions, one can explicitly

11 Though the domain of the map actually changes fromR2×ι×
R1×ι to R1×ι × R1×ι, we keep the notation G for the sake of
clarity and convenience.

use the approximated moment Y to map the set C as

C :

⎧
⎪⎨

⎪⎩

|z(t)| ≤ Zmax,

|ż(t)| ≤ Vmax,

|u(t)| ≤ Umax,

�→ Css

⎧
⎪⎪⎨

⎪⎪⎩

|Y S
−1

ξ(t)| ≤ Zmax,

|Y ξ(t)| ≤ Vmax,

|Luξ(t)| ≤ Umax,

(65)

where we have explicitly used the relation posed in
equation (63). Using the property that, for any f ∈ C1
and α ∈ R+/0, | f (t)| ≤ α → f (t) ∈ [−α, α], and
enforcing the set Css at the collocation set TC ⊂ R+,
we can write (65) as

�
ᵀ

S
−1ᵀ

Y
ᵀ ≤ Zmax1NC ,

�
ᵀ

Y
ᵀ ≤ Vmax1NC ,

�
ᵀ

Lu
ᵀ ≤ Umax1NC ,

(66)

fromwhich the pairs of matrices (Az,Bz) and (Aż,Bż)

in (57) follow directly. Finally, the expressions for the
pair (Au,Bu), and the nonlinear map Y �→ Gu(Y ) in
(57), can be obtained by noting that

�
ᵀ

Lu
ᵀ = �

ᵀ
Γ −1
u

(
Y

ᵀ + ΓηLη
ᵀ

+ΓG
[
G(Y , Lη)

])
, (67)

for any fixed Lη, via Remark 24.

Appendix 2: On the design of (59)

The PI control structure in (59) is designed so as to
interpolate the so-called optimal control impedance Iu :
C0 → C, jω �→ Iu( jω), which can be simply defined
[19,31] as

Iu( jω) = 1

W !( jω)
, (68)

where ! : C → C denotes the Hermitian operator, and
the mapping W : C0 → C is the frequency-response
of the linearised WEC model (34), i.e.

W ( jω) = Cż ( jω − A + BCż Kr( jω))−1 B. (69)

Given any interpolation frequency ωI, the design of the
set of parameters {θ1, θ2} in (59) is performed such that
the following equality

KPI( jωI) = Iu( jωI), (70)

holds, which, for the specific structure in (59), can be
straightforwardly achieved with the following choice
of parameters:

θ1 = � (Iu( jω)) , θ2 = −ωI� (Iu( jω)) . (71)
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