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Abstract—Given the relevance of control-oriented models in
optimal control design for wave energy converters (WECs), this
paper presents a data-driven technique to achieve nonlinear model
reduction by moment-matching for the ISWEC device, a device
originally developed at the Politecnico di Torino. The presented
model reduction technique is capable of providing simple WEC
models, which intrinsically preserve steady-state behaviour from
the target nonlinear system, by merely using information on
the system outputs, defined for a set of operating conditions.
We demonstrate that the proposed model reduction by moment-
matching procedure is well-posed for the ISWEC, and illustrate
the efficacy of this reduction technique under a variety of sea
conditions.

Index Terms—Wave energy, model reduction, nonlinear sys-
tems, optimal control

I. INTRODUCTION

Wave energy converters (WECs) need to be controlled to
maximise the energy absorbed from incoming waves, hence
reducing the associated levelised cost of energy [1], [2]. Both
performance and computational burden associated with such
control algorithms depend upon the availability of control-
oriented models, capable of providing a suitable trade-off
between accuracy and complexity [3]. An effective pathway
towards computation of such models is via model reduction.

A particularly well-developed WEC system is the so-called
ISWEC device [4], originally proposed by the Politecnico di
Torino (see Figure 1). Motivated by the intrinsic nonlinear
behavior of this device [5], and the underlying necessity of
reduced models for optimal control design, the objective of
this paper is to produce reliable and computationally efficient
reduced models by moment-matching [6], [7] for the ISWEC
system, under a variety of input conditions.

The model reduction by moment-matching framework pro-
duces models such that their associated steady-state responses

match the steady-state behaviour of the desired system to
be reduced. We note that a step has been taken in [8] to
solve the model reduction by moment-matching problem for
WECs under hydrodynamic nonlinearities, though the strategy
inherently necessitates the solution of a nonlinear system of
algebraic equations, which might not be feasible for systems
with complex power-take off (PTO) systems, such as the
ISWEC.

In the light of this, we propose, in this paper, a data-driven
approach to nonlinear model reduction for the ISWEC system,
inspired by the results in [9]. To that end, we show existence
and uniqueness of the associated moment for the ISWEC case,
and propose an algorithm to estimate such a mapping using
only knowledge of the WEC outputs, for a certain class of
input signals of interest. Furthermore, we fully illustrate the
effectiveness of the strategy in terms of a detailed case study.

This manuscript is organised as follows. Section II recalls
the notion of a model reduced by moment-matching, while
Section III discusses the dynamics of the ISWEC device.
Section IV discusses theoretical aspects behind the definition
of moment for ISWEC, while Section V presents a data-driven
procedure to compute an approximation of the associated
moment. With such an approximation, Section VI illustrates
the performance of the proposed methodology, for a regular
sea-state, with a large variation in terms of wave height.
Finally, Section VII encompasses the main outcomes of our
study. Note that we do not explicitly provide proofs of our
theoretical results for economy of space. These are to be
presented in an extended version of this manuscript.

II. PRELIMINARIES ON MOMENT-MATCHING

This section recalls standard results in moment-based model
reduction. The interested reader is invited to consult [6], [7],
for a thorough discussion of the topic. Let Σ be a nonlinear,978-1-6654-1262-9/21/$31.00 ©2021 IEEE



single-input single-output (SISO) system, given by the set of
equations1

Σ : {ẋ = f(x, u), y = h(x), (1)

with x(t) ∈ Rn, {u(t), y(t)} ⊂ R, and sufficiently smooth
mappings f and h such that f(0, 0) = 0 and h(0) = 0. Assume
system (1) is minimal. Consider now a signal generator, i.e.
an implicit form description of u, characterised by

ξ̇ = Wξ, u = Qξ, (2)

with {ξ(t), Qᵀ} ⊂ Rν , W ∈ Rν×ν , and the composite
dynamical system

ξ̇ = Wξ, ẋ = f(x,Qξ), y = h(x). (3)

We now introduce a set of standard assumptions in moment-
based theory.

Assumption 1. (Q,W, ξ(0)) is minimal.

Assumption 2. The matrix W in (2) is such that λ(W ) ⊂ C0

with simple eigenvalues.

The following main result holds (see [6], [7]).

Lemma 1. [6], [7] Let Assumption 1 and Assumption 2
hold Suppose the zero equilibrium of system (1) is locally
exponentially stable. Then, the invariance equation

∂π(ξ)

∂ξ
Wξ = f(π(ξ), Qξ), (4)

has a unique locally defined solution π, π(0) = 0. Further-
more, the steady-state response of the interconnected system
(3) is xss(t) = π(ξ(t)), for any set of sufficiently small initial
conditions {x(0), ξ(0)}.

Remark 1. The mapping π is of class Cr, with r ≥ 1 [10].

Definition 1. [6], [7] The mapping h◦π is termed the moment
of system (1) at the signal generator (2), i.e. at (W,Q).

Remark 2. Since h(0) = 0 by assumption, the moment h ◦ π
is always such that h(π(0)) = 0.

A. Model reduction by moment-matching

Model reduction by moment-matching is based upon the
idea of interpolating the steady-state response of a given
system, by means of Definition 1. To be precise, a family
of reduced models by moment-matching for system (1) can
be defined [6] as

Σ̃ :
{

Γ̇ = (W − δ(Γ)Q)Γ + δ(Γ)u, γ = h(π(Γ)), (5)

with δ : Rν → Rν a free (user-defined) mapping. The
determination of Σ̃ depends upon the computation of the
mapping h ◦ π, solution of (4). The latter is far from being
trivial, even with full knowledge of the mappings f and h in
(1), given the nature of (4). This issue is specifically tackled
using a data-driven approach, in Section V.

1The dependence on t is dropped when clear from the context.

III. ISWEC DYNAMICS

The ISWEC system, schematically depicted in Figure 1,
is composed of a hull which incorporates a gyroscope and a
power take-off (PTO) axis, commonly termed ε-axis, which
transforms the associated gyroscopic motion into electricity.
We consider that the hull of the device is constrained to move
in pitch (which is the degree-of-freedom where most energy
from incoming waves is absorbed) and, hence, the associated
dynamics can be described by the set of coupled equations:{

Ipz̈ + kr∗ ż + shz − Jψε̇ cos(ε) = τe,

Ig ε̈+ Jψż cos(ε)− τPTO(ε) = 0,
(6)

with z : R+ → R, t 7→ z(t), denoting the (rotational)
displacement in pitch, and where ε : R+ → R, t 7→ ε(t)
denotes the gyroscope precession angle.

Fig. 1. Schematic illustratation of the ISWEC device, developed at Politecnico
di Torino (figure adapted from [11]).

The wave excitation torque is denoted by τe : R+ → R,
t 7→ τe(t). The function kr ∈ L2(R), t 7→ kr(t), is the impulse
response mapping associated with memory effects arising from
the fluid response, while sh ∈ R is the so-called hydrodystatic
stiffness. The set of parameters {Ip, J, Ig} ⊂ R+ denote the
inertia of the device in pitch (including the so-called added-
inertia at infinite-frequency [12]), gyroscopic inertia, and total
moment of inertia in the ε-axis, respectively. Finally, ψ ∈ R+

denotes the (suitably selected - see [5]) constant value for the
flywheel speed. The PTO moment τPTO is chosen here based
upon a proportional-derivative (PD) control strategy, i.e.

τPTO(ε) = −kεPTOε− kε̇PTOε̇, (7)

with {kεPTO, k
ε̇
PTO} ⊂ R. This set of parameters is commonly

computed such that the energy absorption from waves is max-
imised, while minimising chances of actuator/device damage.
The impulse response function kr is approximated [13] in
terms of a finite-dimensional dynamical structure, i.e.

ṗ = Fp+Gż, kr∗ ż ≈ Hp, (8)

with p(t) ∈ Rnr , and where the set of real-valued matrices
(F,G,H) are dimensioned accordingly.



With the approximation defined in (8), the set of equations
(6) can be written analogous to (1) as follows:

Σ :
{
ẋ = f(x, τe) = Ax+Bτe + gnl(x), y = h(x) = Cx,

(9)
where the state-vector is defined as x = [z ż ε ε̇ pᵀ]ᵀ, x(t) ∈
R4+nr , and the triple of matrices (A,B,C), and mapping gnl,
are given by the expressions below:

A =

[
A0 −B0H
GC0 F

]
, B =

[
B0

0

]
,

C =
[
Cε 0

]
, gnl(x) =

[
g0(x)

0

]
,

(10)

together with

A0 =


0 1 0 0
− shIp 0 0 0

0 0 0 1

0 0 −k
ε
PTO
Ig

−k
ε̇
PTO
Ig

 , B0 =


0
1
Ip

0
0

 ,

C0ᵀ

=


0
1
0
0

 , Cᵀ
ε =


0
0
1
0

 , g0(x) =


0

Jψ
Ip
x4 cos(x3)

0

−JψIg x2 cos(x3)

 ,
(11)

where A ∈ R4+nr , {B,Cᵀ} ⊂ R4+nr , A0 ∈ R4×4,
{B0, C0ᵀ

, Cᵀ
ε } ⊂ R4. Note that the smooth mappings gnl and

g0 are such that gnl : R4+nr → R4+nr and g0 : R4+nr → R4,
and where gnl(0) = 0 and g0(0) = 0.

IV. MOMENT-BASED ANALYSIS FOR THE ISWEC DEVICE

We show, in this section, that the moment for the ISWEC
system, computed at the class of input signals arising in wave
energy applications, is always well-defined, and we expose
fundamental properties behind h◦π. These results are exploited
later in the proposed data-driven algorithm, in Section V.

Following the theoretical results recalled in Section II, τe
is expressed in terms of a corresponding exogeneous system,
i.e.2

ξ̇ = Wξ, τe = Qξ, W =

[
0 ω0

−ω0 0

]
, (12)

for t ∈ R+, with {ξ(t), Qᵀ} ⊂ R2, ω0 ∈ R+.
From now on, and without any loss of generality, Qᵀ =

[1 1]. Note that ([1 1],W, ξ(0)) is minimal as long as (W, ξ(0))
is excitable (reachable).
Remark 3. With any ξ(0) such that (W, ξ(0)) is ex-
citable, one can automatically check that span{ξ1, ξ2} =
span{cos(ω0t), sin(ω0t)}. In other words, the mapping τe is
always T0-periodic, where the so-called fundamental periodis
given by T0 = 2π/ω0 ∈ R+.

Throughout the reminder of this section, we prove existence
of the moment of system (9) at the signal generator defined by
(12), which guarantees well-posedness of the model reduction

2Extension of this strategy to irregular sea states can be done as in [8].

by moment-matching procedure for the ISWEC device. To do
so, we introduce the following assumption on system (9).

Assumption 3. The zero equilibrium of the ISWEC system,
i.e. ẋ = f(x, 0), with f as in (9), is locally exponentially
stable.

Lemma 2. Consider the ISWEC system (9) and the exogenous
system (12). Let Q = [1 1] and suppose ξ(0) = [αβ]ᵀ is such
that α and β are not simultaneously zero. Suppose Assumption
3 holds. Then, the moment h ◦ π for the ISWEC system at
(W,Q) is well-defined.

It follows that a set of (reduced) models achieving moment-
matching at (W,Q) of order ν = 2, can be written in terms
of the corresponding mapping h ◦ π,

Σ̃ :

{
Γ̇ = (W −∆Q)Γ + ∆τe,

ỹ = h(π(Γ)) = Cπ(Γ),
(13)

with the matrix ∆ ∈ Rν a user-defined parameter.
Remark 4. Note that system (13) is input-to-state linear. This
is highly appealing in terms of computational terms: the main
‘cost’ behind solving (13) for a given input signal is merely
the cost of solving a linear differential equation, which can be
performed very efficiently.

Finally, we present the following result, which is fundamen-
tal for the upcoming sections. In particular, we show that the
moment, computed along a specific trajectory of (12), is of a
T0-periodic nature.

Lemma 3. Suppose the triple ([1 1],W, ξ(0)) is minimal and
that Assumption 3 holds. Then, the mapping h ◦ π ◦ ξ is T0-
periodic, with T0 = 2π/ω0.

V. DATA-DRIVEN APPROXIMATION OF h ◦ π
Even with exact knowledge of the system dynamics, i.e.

equation (9), the computation of the mapping π in (13) can
be a difficult task. Motivated by this, we present a data-
driven approach to approximate the corresponding moment, by
explicitly using ‘measured’ outputs of system (9), for different
inputs generated by (12), in order to provide a suitable estimate
of the mapping h ◦ π. Aiming to simplify the exposition of
the upcoming results, we adopt the notation M = h ◦ π
throughout the reminder of our study. We start by introducing
the following standard assumption, which is inspired by [9].

Assumption 4. M belongs to the space generated by a family
of real-valued mappings {ζj}∞j=1, with ζi : R2 → R, ζi ∈ C,
i.e one can always find a set of constants aj such thatM(ξ) =∑∞
j=1 ajζj(ξ), for every ξ ∈ Ξ.

Assumption 4 provides a natural definition for an approxi-
mation ofM, as detailed in Definition 2. Note that, in practice,
the family of functions ζj can be selected via a trial and error
procedure, using, for instance, a polynomial expansion.

Definition 2. Suppose Assumption 4 holds. We call the map-
ping M̃(ξ) =

∑N
j=1 ajζj(ξ), with N finite, the approximated

moment of system (9) at the signal generator (W,Q).



Definition 2 is based upon the idea of ‘truncating’ the ex-
pansion for M, available upon Assumption 4, up to N basis
functions, i.e. the moment is essentially approximated by
its expansion in the subset {ζj}Ni=1. In fact, the data-driven
approach presented aims to compute the set of coefficients
{aj}Nj=1 for the ISWEC case, by explicitly using information
on the steady-state output response of (9). To achieve this, let
us define the following auxiliary variables

Π =
[
a1 a2 . . . aN

]
,

Z(ξ) =
[
ζ1(ξ) ζ2(ξ) . . . ζN (ξ)

]ᵀ
,

(14)

where {Πᵀ, Z(ξ)} ⊂ RN . Note that, with the definitions
presented in (14), the approximated moment can then be
written in a compact form as

M̃(ξ) = ΠZ(ξ), (15)

and hence the approximation problem reduces to find a suitable
matrix Π, for a given basis-function vector Z(ξ).

In the following, we define a number of key sets, which
are fundamental for the computation of the corresponding
approximation. Let us define I0 = {ξi0}

Nt
i=1 ⊂ R2, with each

initial condition in I0 defined as ξi0 = [αi βi]
ᵀ, where the

(sufficiently small) constants αi and βi are not simultaneously
zero for all i ∈ NN . Let I = {ξi(t)}Nt

i=1 ⊂ Ξ be the
associated set of trajectories, where ξi is the trajectory of (12)
with initial condition ξ(0) = ξi0, i.e. ξi(t) = eWtξi. Finally, let
Y = {yiss(t)}

Nt
i=1 ⊂ R denote the set of steady-state outputs

of the ISWEC system (9), driven by each generated input u
in terms of the set I , i.e. ui(t) = [1 1]ξi(t).

Remark 5. In practice, the steady-state output response yss(t)
(which is always well-defined under the adopted assumptions)
can be obtained as the output of (9) after a sufficiently large
time Tss ∈ R+, i.e. after the transient response extinguishes.

Remark 6. By Lemma 2 (i.e. existence of the associated
moment for the ISWEC device), given a (sufficiently small)
initial condition ξi0, producing an associated trajectory ξi(t),
the evaluation of the moment at ξi(t) coincides with the well-
defined steady-state output response of the ISWEC system (9).

By exploiting the connection highlighted in Remark 6, we
propose the following data-driven strategy to compute Π in
(15). Let T = {tq}Nc

q=1 ⊂ [Tss, Tss + T0], where each tq
represents a time-instant, with Nc > Nt. Let the set of constant
matrices {Mi}Nt

i=1 ⊂ RN×Nc and {Oi}Nt
i=1 ⊂ R1×Nc be

defined such that

Mi =
[
Z(ξi(t1)) Z(ξi(t2)) . . . Z(ξi(tNc))

]
,

Oi =
[
yiss(t1) yiss(t2) . . . yiss(tNc

)
]
.

(16)

With the definition of the matrices in (16), the approximated
moment can be computed as M̃(ξ) = ΠLSZ(ξ), where ΠLS

is the unique solution of the linear least-squares procedure:

ΠLS = arg max
Πᵀ∈RN

∥∥∥∥∥∥∥∥∥Π


M ᵀ

1

M ᵀ
2

...
M ᵀ

Nt


ᵀ

−


Oᵀ

1

Oᵀ
2
...

Oᵀ
Nt


ᵀ∥∥∥∥∥∥∥∥∥

2

2

,

subject to: ΠZ(0) = 0.

(17)

Remark 7. The least-squares optimization method in (17) fully
exploits the result of Lemma 3: SinceM(ξ(t)) is T0-periodic,
it is sufficient to use the information of the steady-state output
response of (9) over a single single period, i.e. [Tss, Tss + T0],
to fully characterise M(ξ(t)). This, naturally, guarantees the
well-posedness of the approximation proposed in (17).

Remark 8. The equality constraint in (17) is used to guarantee
that the approximated moment effectively complies with the
property in Remark 2.

VI. CASE STUDY

We now consider the ISWEC system described by the set
of equations (9), with parameters as detailed in [5]. The
approximation of the radiation system, i.e. the set of matrices
(F,G,H) in (8), is computed using the moment-matching-
based technique presented in [13], rendering an approximated
system of dimension (order) nr = 6. The total order of the
state-space (9) is hence n = 4 + nr = 10.

As anticipated in Section IV, we consider regular
(monochromatic) input waves, with a fundamental period T0 =
2π/ω0 [s], with ω0 the associated fundamental frequency. In
these conditions, the excitation input τe can be written as,

τe(t) =
|Ke(ω0)|

2
Hw cos(ω0t) = AeHw cos(ω0t), (18)

where Hw is the wave height, and Ke : R → C defines the
frequency-domain equivalent of the wave excitation impulse
response mapping (see [12]).

Remark 9. The input in (18) can always be generated in terms
of the signal generator (12), with a suitable selection for the
output vector Q and initial condition ξ(0). In this study, we
set the former as Q = Ae[1 1], while the latter is defined in
terms of the wave height, i.e. ξ(0) = Hw[0.5 0.5]ᵀ.

From now on, we assume that the ISWEC is subject
to waves such that ω0 = 0.8 [rad/s] (i.e. waves with a
fundamental period of T0 ≈ 8 [s]), and Hw ∈ H , with
H = [0.3 3] [m], so that a large variability with respect to
the input amplitude is expected. Having knowledge of the
operating conditions of the device, we now define the set of
training initial conditions I0 as follows: Let {Hi

w}
Nt
i=1 ⊂ H

denote a finite set of Nt values for the wave height with a
given spacing (e.g. uniform), and let each initial condition
in the set I0 be hence defined as ξi0 = Hi

w[0.5 0.5]ᵀ. Note
that, with such a definition, the computation of the sets I
and Y , i.e. signal generator trajectories and generator outputs,
and corresponding steady-state outputs for system (9), can be
performed directly.
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with the approximated manifold (left); Target moment evaluated at the set of training trajectories, together with the approximated manifold (right).

With respect to the specification of Z in (15), and motivated
by the degree of smoothness of π (see Remark 1), the defi-
nition of the approximation function space for the associated
moment is done herein in terms of a polynomial surface in
(ξ1, ξ2). In particular, we propose the following specification
for Z:

Z(ξ) =
[
ξ2 ξ3

2 ξ5
2 ξ1 ξ1ξ

2
2 ξ1ξ

4
2 ξ2

1ξ2 . . .

ξ2
1ξ

3
2 ξ2

1ξ
5
2 ξ3

1 ξ3
1ξ

2
2 ξ3

1ξ
4
2

]ᵀ (19)

where Z(ξ) ∈ R12. With the function space spanned by the
terms in (19), and having computed the set of training initial
conditions, training trajectories, and steady-state outputs from
the response of (9), we proceed to implement the algorithm
described in equation (17), resulting in an optimal expansion
with

ΠLS =
[
−0.50 −0.18 0.15 −1.87 0.06 −0.01 . . .

0.24 0.25 0.01 0.57 0.09 0.06
]
.

(20)

As can be appreciated in Figure 2 (left), the approximation
(dashed) is well-behaved for all of the considered steady-state
output responses (solid). Furthemore, as can be appreciated
in Figure 2 (center and right), the approximated moment,
computed along each specific training trajectory, is graphi-
cally indistinguishible from the target moment (computed in
terms of each corresponding steady-state output), hence fully

demonstrating the performance of the data-driven approach for
the training set.

The results presented in Figure 2 (particularly those in the
center and right-hand-side plots), are extended in Figure 3. In
particular, Figure 3 (left) shows the evolution of the moment
of the ISWEC system, evaluated at a particular trajectory of
the associated signal generator (including transient behaviour)
with Hw = 2.5 [m], together with the manifold generated by
the approximated moment (19). It can be readily appreciated
how, after the transient period extinguishes, the target moment
converges towards the approximated manifold, highlighting
the performance of the approach for this case study. This is
further extended in Figure 3 (right), where the target moment
evaluated at the set of training trajectories, i.e. the results
presented in 2 (center and right), are illustrated together with
the approximated manifold for the complete operational space.

Finally, having demonstrated the accuracy of the approx-
imated moment (19), we construct a reduced model for the
ISWEC device based on (13), i.e.

Σ̃ :

Γ̇ =

([
0 −0.8

0.8 0

]
−∆

[
Ae Ae

])
Γ + ∆τe,

ỹ = CΠLSZ(Γ),

(21)

with Z as in (19), ΠLS as in (20), and where the matrix ∆
is such that we preserve the two dominant eigenvalues of the
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associated Jacobian linearisation of the device, i.e. we choose
∆ such that the eigenvalues of (21) are {−0.18± j1.18}.

To illustrate the performance of the reduced model (21),
Figure 4 (top) presents output traces for both the target
(solid) ISWEC system (9), and the approximating (dashed)
model (21), for a wave excitation torque corresponding with
Hw = 2.5 [m]. In addition, the output corresponding with
the Jacobian linearisation of (9) about the zero equilibrium is
also presented (dotted), for the benefit of the reader. It can
be apprecitaed that, after the transient period, both target and
approximated responses are virtually identical. This is clearly
not the case for the output arising from Jacobian linearisation,
which presents a large error in both transient, and steady-state
periods. This is further illustrated in Figure 4 (bottom), where
time-traces of the absolute value of the difference between
the output response of the target ISWEC system and each
corresponding approximated output, are presented.

VII. CONCLUSIONS

Driven by the underlying necessity of control-oriented mod-
els for the optimization of the wave energy absorption process,
we present, in this paper, a data-driven approach to model
reduction by moment-matching for the ISWEC case. Such
a methodology computes linear input-to-state models, with
a nonlinear output map, by merely using data from system
outputs for a defined class of inputs. The performance of
the proposed technique is illustrated with detail, showing that
the approach is capable of providing parsimonious models
for control design, while successfully retaining steady-state
response characteristics of the target ISWEC system, which
are fundamental for energy-maximising control purposes.
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