34 research outputs found

    Isogeometric preconditioners based on fast solvers for the Sylvester equation

    Full text link
    We consider large linear systems arising from the isogeometric discretization of the Poisson problem on a single-patch domain. The numerical solution of such systems is considered a challenging task, particularly when the degree of the splines employed as basis functions is high. We consider a preconditioning strategy which is based on the solution of a Sylvester-like equation at each step of an iterative solver. We show that this strategy, which fully exploits the tensor structure that underlies isogeometric problems, is robust with respect to both mesh size and spline degree, although it may suffer from the presence of complicated geometry or coefficients. We consider two popular solvers for the Sylvester equation, a direct one and an iterative one, and we discuss in detail their implementation and efficiency for 2D and 3D problems on single-patch or conforming multi-patch NURBS geometries. Numerical experiments for problems with different domain geometries are presented, which demonstrate the potential of this approach

    Matrix-free weighted quadrature for a computationally efficient isogeometric kk-method

    Full text link
    The kk-method is the isogeometric method based on splines (or NURBS, etc.) with maximum regularity. When implemented following the paradigms of classical finite element methods, the computational resources required by the k−k-method are prohibitive even for moderate degree. In order to address this issue, we propose a matrix-free strategy combined with weighted quadrature, which is an ad-hoc strategy to compute the integrals of the Galerkin system. Matrix-free weighted quadrature (MF-WQ) speeds up matrix operations, and, perhaps even more important, greatly reduces memory consumption. Our strategy also requires an efficient preconditioner for the linear system iterative solver. In this work we deal with an elliptic model problem, and adopt a preconditioner based on the Fast Diagonalization method, an old idea to solve Sylvester-like equations. Our numerical tests show that the isogeometric solver based on MF-WQ is faster than standard approaches (where the main cost is the matrix formation by standard Gaussian quadrature) even for low degree. But the main achievement is that, with MF-WQ, the kk-method gets orders of magnitude faster by increasing the degree, given a target accuracy. Therefore, we are able to show the superiority, in terms of computational efficiency, of the high-degree kk-method with respect to low-degree isogeometric discretizations. What we present here is applicable to more complex and realistic differential problems, but its effectiveness will depend on the preconditioner stage, which is as always problem-dependent. This situation is typical of modern high-order methods: the overall performance is mainly related to the quality of the preconditioner

    Robust isogeometric preconditioners for the Stokes system based on the Fast Diagonalization method

    Full text link
    In this paper we propose a new class of preconditioners for the isogeometric discretization of the Stokes system. Their application involves the solution of a Sylvester-like equation, which can be done efficiently thanks to the Fast Diagonalization method. These preconditioners are robust with respect to both the spline degree and mesh size. By incorporating information on the geometry parametrization and equation coefficients, we maintain efficiency on non-trivial computational domains and for variable kinematic viscosity. In our numerical tests we compare to a standard approach, showing that the overall iterative solver based on our preconditioners is significantly faster.Comment: 31 pages, 4 figure

    Space-time least-squares isogeometric method and efficient solver for parabolic problems

    Full text link
    In this paper, we propose a space-time least-squares isogeometric method to solve parabolic evolution problems, well suited for high-degree smooth splines in the space-time domain. We focus on the linear solver and its computational efficiency: thanks to the proposed formulation and to the tensor-product construction of space-time splines, we can design a preconditioner whose application requires the solution of a Sylvester-like equation, which is performed efficiently by the fast diagonalization method. The preconditioner is robust w.r.t. spline degree and mesh size. The computational time required for its application, for a serial execution, is almost proportional to the number of degrees-of-freedom and independent of the polynomial degree. The proposed approach is also well-suited for parallelization.Comment: 29 pages, 8 figure

    A low-rank isogeometric solver based on Tucker tensors

    Full text link
    We propose an isogeometric solver for Poisson problems that combines i) low-rank tensor techniques to approximate the unknown solution and the system matrix, as a sum of a few terms having Kronecker product structure, ii) a Truncated Preconditioned Conjugate Gradient solver to keep the rank of the iterates low, and iii) a novel low-rank preconditioner, based on the Fast Diagonalization method where the eigenvector multiplication is approximated by the Fast Fourier Transform. Although the proposed strategy is written in arbitrary dimension, we focus on the three-dimensional case and adopt the Tucker format for low-rank tensor representation, which is well suited in low dimension. We show in numerical tests that this choice guarantees significant memory saving compared to the full tensor representation. We also extend and test the proposed strategy to linear elasticity problems.Comment: 27 pages, 8 figure

    A low-rank solver for conforming multipatch Isogeometric Analysis

    Full text link
    In this paper we present a low-rank method for conforming multipatch discretizations of compressible linear elasticity problems using Isogeometric Analysis. The proposed technique is a non-trivial extension of [M. Montardini, G. Sangalli, and M. Tani. A low-rank isogeometric solver based on Tucker tensors. Comput. Methods Appl. Mech. Engrg., page 116472, 2023.] to multipatch geometries. We tackle the model problem using an overlapping Schwarz method, where the subdomains can be defined as unions of neighbouring patches. Then on each subdomain we approximate the blocks of the linear system matrix and of the right-hand side vector using Tucker matrices and Tucker vectors, respectively. We use the Truncated Preconditioned Conjugate Gradient as a linear solver, coupled with a suited preconditioner. The numerical experiments show the advantages of this approach in terms of memory storage. Moreover, the number of iterations is robust with respect to the relevant parameters.Comment: 17 pages, 8 figure

    Space-time least squares approximation for Schr\"odinger equation and efficient solver

    Full text link
    In this work we present a space-time least squares isogeometric discretization of the Schr\"odinger equation and propose a preconditioner for the arising linear system in the parametric domain. Exploiting the tensor product structure of the basis functions, the preconditioner is written as the sum of Kronecker products of matrices. Thanks to an extension to the classical Fast Diagonalization method, the application of the preconditioner is efficient and robust w.r.t. the polynomial degree of the spline space. The time required for the application is almost proportional to the number of degrees-of-freedom, for a serial execution.Comment: arXiv admin note: text overlap with arXiv:1909.0730

    Parallelization in time by diagonalization

    Full text link
    This is a review of preconditioning techniques based on fast-diagonalization methods for space-time isogeometric discretization of the heat equation. Three formulation are considered: the Galerkin approach, a discrete least-square and a continuous least square. For each formulation the heat differential operator is written as a sum of terms that are kronecker products of uni-variate operators. These are used to speed-up the application of the operator in iterative solvers and to construct a suitable preconditioner. Contrary to the fast-diagonalization technique for the Laplace equation where all uni-variate operators acting on the same direction can be simultaneously diagonalized in the case of the heat equation this is not possible. Luckily this can be done up to an additional term that has low rank allowing for the utilization of arrow-head like factorization or inversion by Sherman-Morrison formula. The proposed preconditioners work extremely well on the parametric domain and, when the domain is parametrized or when the equation coefficients are not constant, they can be adapted and retain good performance characteristics.Comment: arXiv admin note: substantial text overlap with arXiv:1909.07309, arXiv:2311.1846

    local therapy for breast cancer in malignant lymphoma survivors

    Get PDF
    Summary Aims: Breast cancer is the most frequent secondary tumor in young women previously treated with mantle radiation for Hodgkin's disease. Prior therapeutic radiation to the breast region is considered an absolute contraindication to breast conservative surgery, and mastectomy is considered the treatment of choice. We performed a retrospective review to assess the potential of performing breast conservative surgery and intraoperative radiotherapy with electrons (ELIOT), in these patients. Methods and results: Forty-three patients affected by early breast cancer, previously treated with mantle radiation for malignant lymphoma, who underwent breast conservative surgery and ELIOT, were identified in our institution. Median age at diagnosis of lymphoma was 26 years (49% were less than 25). Median interval between lymphoma and breast cancer occurrence was 19 years. A total dose of 21 Gy (prescribed at 90% isodose) in 39 patients (91%), of 17 Gy (prescribed at 100% isodose) in 1 patient and 18 Gy (prescribed at 90% isodose), was delivered. ELIOT was well tolerated in all patients without any unusual acute or late reactions. After a median follow-up of 52 months, local recurrence occurred in 9% of the patients and metastases in 7% patients. Conclusion: In patients previously treated for lymphoma, partial breast irradiation, and in particular ELIOT, permits breast conservative surgery without acute local complications, decreasing the number of avoidable mastectomies
    corecore