A low-rank solver for conforming multipatch Isogeometric Analysis

Abstract

In this paper we present a low-rank method for conforming multipatch discretizations of compressible linear elasticity problems using Isogeometric Analysis. The proposed technique is a non-trivial extension of [M. Montardini, G. Sangalli, and M. Tani. A low-rank isogeometric solver based on Tucker tensors. Comput. Methods Appl. Mech. Engrg., page 116472, 2023.] to multipatch geometries. We tackle the model problem using an overlapping Schwarz method, where the subdomains can be defined as unions of neighbouring patches. Then on each subdomain we approximate the blocks of the linear system matrix and of the right-hand side vector using Tucker matrices and Tucker vectors, respectively. We use the Truncated Preconditioned Conjugate Gradient as a linear solver, coupled with a suited preconditioner. The numerical experiments show the advantages of this approach in terms of memory storage. Moreover, the number of iterations is robust with respect to the relevant parameters.Comment: 17 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions