149 research outputs found

    Characterization of the evolution of noble metal particles in a commercial three‐way catalyst: Correlation between real and simulated ageing

    Get PDF
    Ageing of automotive catalysts is associated to a loss of their functionality and ultimately to a waste of precious resources. For this reason, understanding catalyst ageing phenomena is necessary for the design of long lasting efficient catalysts. The present work has the purpose of studying in depth all the phenomena that occur during ageing, in terms of morphological modification and deactivation of the active materials: precious metal particles and oxidic support. The topic was deeply investigated using specific methodologies (FT‐IR, CO chemisorption, FE‐ SEM) in order to understand the behavior of metals and support, in terms of their surface properties, morphology and dispersion in the washcoat material. A series of commercial catalysts, aged in different conditions, have been analyzed, in order to find correlations between real and simulated ageing conditions. The characterization highlights a series of phenomena linked to the deactivation of the catalysts. Pd nanoparticles undergo a rapid agglomeration, exhibiting a quick loss of dispersion and of active sites with an increase of particles size. The evolution of the support allows highlighting also the contribution of chemical ageing effects. These results were also correlated with performance tests executed on synthetic gas bench, underlining a good correspondence between vehicle and laboratory aged samples and the contribution of chemical poisoning to vehicle aged ones. The collected data are crucial for the development of accelerated laboratory ageing protocols, which are instrumental for the development and testing of long lasting abatement systems

    The Secondary Structure of a Major Wine Protein is Modified upon Interaction with Polyphenols

    Get PDF
    Polyphenols are an important constituent of wines and they are largely studied due to their antioxidant properties and for their effects on wine quality and stability, which is also related to their capacity to bind to proteins. The effects of some selected polyphenols, including procyanidins B1 and B2, tannic acid, quercetin, and rutin, as well as those of a total white wine procyanidin extract on the conformational properties of the major wine protein VVTL1 (Vitis vinifera Thaumatin-Like-1) were investigated by Synchrotron Radiation Circular Dichroism (SRCD). Results showed that VVTL1 interacts with polyphenols as demonstrated by the changes in the secondary (far-UV) and tertiary (near-UV) structures, which were differently affected by different polyphenols. Additionally, polyphenols modified the two melting temperatures (TM) that were found for VVTL1 (32.2 °C and 53.9 °C for the protein alone). The circular dichroism (CD) spectra in the near-UV region revealed an involvement of the aromatic side-chains of the protein in the interaction with phenolics. The data demonstrate the existence of an interaction between polyphenols and VVTL1, which results in modification of its thermal and UV denaturation pattern. This information can be useful in understanding the behavior of wine proteins in presence of polyphenols, thus giving new insights on the phenomena that are involved in wine stability

    Rotational and high-resolution infrared spectrum of HC3_3N: global ro-vibrational analysis and improved line catalogue for astrophysical observations

    Full text link
    HC3_3N is an ubiquitous molecule in interstellar environments, from external galaxies, to Galactic interstellar clouds, star forming regions, and planetary atmospheres. Observations of its rotational and vibrational transitions provide important information on the physical and chemical structure of the above environments. We present the most complete global analysis of the spectroscopic data of HC3_3N. We have recorded the high-resolution infrared spectrum from 450 to 1350 cm−1^{-1}, a region dominated by the intense Îœ5\nu_5 and Îœ6\nu_6 fundamental bands, located at 660 and 500 cm−1^{-1}, respectively, and their associated hot bands. Pure rotational transitions in the ground and vibrationally excited states have been recorded in the millimetre and sub-millimetre regions in order to extend the frequency range so far considered in previous investigations. All the transitions from the literature and from this work involving energy levels lower than 1000 cm−1^{-1} have been fitted together to an effective Hamiltonian. Because of the presence of various anharmonic resonances, the Hamiltonian includes a number of interaction constants, in addition to the conventional rotational and vibrational l-type resonance terms. The data set contains about 3400 ro-vibrational lines of 13 bands and some 1500 pure rotational lines belonging to 12 vibrational states. More than 120 spectroscopic constants have been determined directly from the fit, without any assumption deduced from theoretical calculations or comparisons with similar molecules. An extensive list of highly accurate rest frequencies has been produced to assist astronomical searches and data interpretation. These improved data, have enabled a refined analysis of the ALMA observations towards Sgr B2(N2).Comment: 35 pages, 14 figures, accepted for pubblication in ApJ Supplemen

    Weak Lensing Study in VOICE Survey II: Shear Bias Calibrations

    Get PDF
    The VST Optical Imaging of the CDFS and ES1 Fields (VOICE) Survey is proposed to obtain deep optical ugriugri imaging of the CDFS and ES1 fields using the VLT Survey Telescope (VST). At present, the observations for the CDFS field have been completed, and comprise in total about 4.9 deg2^2 down to rABr_\mathrm{AB}∌\sim26 mag. In the companion paper by Fu et al. (2018), we present the weak lensing shear measurements for rr-band images with seeing ≀\le 0.9 arcsec. In this paper, we perform image simulations to calibrate possible biases of the measured shear signals. Statistically, the properties of the simulated point spread function (PSF) and galaxies show good agreements with those of observations. The multiplicative bias is calibrated to reach an accuracy of ∌\sim3.0%. We study the bias sensitivities to the undetected faint galaxies and to the neighboring galaxies. We find that undetected galaxies contribute to the multiplicative bias at the level of ∌\sim0.3%. Further analysis shows that galaxies with lower signal-to-noise ratio (SNR) are impacted more significantly because the undetected galaxies skew the background noise distribution. For the neighboring galaxies, we find that although most have been rejected in the shape measurement procedure, about one third of them still remain in the final shear sample. They show a larger ellipticity dispersion and contribute to ∌\sim0.2% of the multiplicative bias. Such a bias can be removed by further eliminating these neighboring galaxies. But the effective number density of the galaxies can be reduced considerably. Therefore efficient methods should be developed for future weak lensing deep surveys.Comment: 11 pages, 13 figures, 2 tables. MNRAS accepte

    Metabolic control of DNA methylation in naive pluripotent cells.

    Get PDF
    Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions

    A conformational switch controlling the toxicity of the prion protein

    Full text link
    Prion infections cause conformational changes of the cellular prion protein (PrPC) and lead to progressive neurological impairment. Here we show that toxic, prion-mimetic ligands induce an intramolecular R208-H140 hydrogen bond (‘H-latch’), altering the flexibility of the α2–α3 and ÎČ2–α2 loops of PrPC. Expression of a PrP2Cys mutant mimicking the H-latch was constitutively toxic, whereas a PrPR207A mutant unable to form the H-latch conferred resistance to prion infection. High-affinity ligands that prevented H-latch induction repressed prion-related neurodegeneration in organotypic cerebellar cultures. We then selected phage-displayed ligands binding wild-type PrPC, but not PrP2Cys. These binders depopulated H-latched conformers and conferred protection against prion toxicity. Finally, brain-specific expression of an antibody rationally designed to prevent H-latch formation prolonged the life of prion-infected mice despite unhampered prion propagation, confirming that the H-latch is an important reporter of prion neurotoxicity
    • 

    corecore