10 research outputs found

    The COVID-19 Worsening Score (COWS)-a predictive bedside tool for critical illness

    Get PDF
    18Objectives: To evaluate the accuracy of a new COVID-19 prognostic score based on lung ultrasound (LUS) and previously validated variables in predicting critical illness. Methods: We conducted a single-center retrospective cohort development and internal validation study of the COVID-19 Worsening Score (COWS), based on a combination of the previously validated COVID-GRAM score (GRAM) variables and LUS. Adult COVID-19 patients admitted to the emergency department (ED) were enrolled. Ten variables previously identified by GRAM, days from symptom onset, LUS findings, and peripheral oxygen saturation/fraction of inspired oxygen (P/F) ratio were analyzed. LUS score as a single predictor was assessed. We evaluated GRAM model's performance, the impact of adding LUS, and then developed a new model based on the most predictive variables. Results: Among 274 COVID-19 patients enrolled, 174 developed critical illness. The GRAM score identified 51 patients at high risk of developing critical illness and 132 at low risk. LUS score over 15 (range 0 to 36) was associated with a higher risk ratio of critical illness (RR, 2.05; 95% confidence interval [CI], 1.52-2.77; area under the curve [AUC], 0.63; 95% CI 0.676-0.634). The newly developed COVID-19 Worsening Score relies on five variables to classify high- and low-risk patients with an overall accuracy of 80% and negative predictive value of 93% (95% CI, 87%-98%). Patients scoring more than 0.183 on COWS showed a RR of developing critical illness of 8.07 (95% CI, 4.97-11.1). Conclusions: COWS accurately identify patients who are unlikely to need intensive care unit (ICU) admission, preserving resources for the remaining high-risk patients.openopenBoero, Enrico; Rovida, Serena; Schreiber, Annia; Berchialla, Paola; Charrier, Lorena; Cravino, Marta Maria; Converso, Marcella; Gollini, Paola; Puppo, Mattia; Gravina, Angela; Fornelli, Giorgia; Labarile, Giulia; Sciacca, Santi; Bove, Tiziana; Karakitsos, Dimitrios; AprĂ , Franco; Blaivas, Michael; Vetrugno, LuigiBoero, Enrico; Rovida, Serena; Schreiber, Annia; Berchialla, Paola; Charrier, Lorena; Cravino, Marta Maria; Converso, Marcella; Gollini, Paola; Puppo, Mattia; Gravina, Angela; Fornelli, Giorgia; Labarile, Giulia; Sciacca, Santi; Bove, Tiziana; Karakitsos, Dimitrios; AprĂ , Franco; Blaivas, Michael; Vetrugno, Luig

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Peroneal tendoscopy

    No full text
    Peroneal tendoscopy is an innovative technique that allows visualization of the tendons from the myotendinous junction to the peroneal tubercle, together with adjacent anatomic structures such as the recently unveiled vincula. Through a minimally invasive approach, it is possible to diagnose and treat several disorders, such as common tenosynovitis, accessory muscles, hypertrophic bony prominences, and thickened vincula, that can cause pain and tendon catching. Surgical morbidity and postoperative pain are significantly reduced when compared with open procedures. In this paper, the main indications for peroneal tendoscopy are discussed, the available literature is reviewed, and the surgical technique is described. Advantages of this procedure and current limitations are also presented. Anatomic and histological studies were also performed in order to verify: 1) the feasibility of peroneal tendoscopy for evaluation of peroneal tendons, using cadaver specimens; 2) the presence of nervous tissue in cadaver peroneal vincula as well as in tendoscopic vincula biopsies from patients undergoing surgery for chronic lateral ankle pain. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12178-012-9123-1) contains supplementary material, which is available to authorized users

    Evolution over Time of Leg Length Discrepancy in Patients with Syndromic and Isolated Lateralized Overgrowth

    No full text
    Objective: To provide information on evolution over time of leg length discrepancy in patients with syndromic and isolated lateralized overgrowth. Study design: This retrospective study investigates leg length discrepancy longitudinally in 105 patients with lateralized overgrowth either isolated (n = 37) or associated with Beckwith-Wiedemann spectrum (n = 56) or PIK3CA-related overgrowth spectrum (n = 12). Discrepancy was measured by standard methods and categorized as minor, mild, severe, and critical, based on the thresholds of 1, 2 and 5, respectively. Results: The period of observation from diagnosis was 1.7 ± 2.6 to 9.0 ± 6.0 years. Leg length discrepancy was 11.0 ± 7.2 mm at diagnosis and 17.1 ± 14.4 mm at last visit. Both final leg length discrepancy and change over time were correlated with discrepancy at diagnosis (r2 = 0.45, P < .001 and r2 = 0.05, P = .019, respectively). Among minor leg length discrepancy at diagnosis, 47.5% remained minor, 40.0% become mild, and 12.5% severe. Among patients with discrepancy classified as severe at diagnosis, 84.6% remained severe and 15.4% evolved to critical. The isolated lateralized overgrowth group showed a milder evolution over time compared with Beckwith-Wiedemann spectrum and PIK3CA-related overgrowth spectrum groups. Among patients with Beckwith-Wiedemann, those with paternal chromosome 11 uniparental disomy had more severe leg length discrepancy at diagnosis and evolution over time. Conclusions: Leg length discrepancy associated with isolated or syndromic lateralized overgrowth tends to worsen with growth and correlates with discrepancy at first observation. Among the genotypic groups, isolated lateralized overgrowth tends to have a milder evolution, whereas Beckwith-Wiedemann spectrum predisposes to a more severe outcome, especially if associated with paternal chromosome 11 uniparental disomy genotype

    Neotropical xenarthrans: a dataset of occurrence of xenarthran species in the Neotropics.

    No full text
    International audienceXenarthrans—anteaters, sloths, and armadillos—have essential functions forecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosys-tem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts withdomestic dogs, these species have been threatened locally, regionally, or even across their fulldistribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths.Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae(3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data onDasypus pilo-sus(Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized,but new genetic studies have revealed that the group is represented by seven species. In thisdata paper, we compiled a total of 42,528 records of 31 species, represented by occurrence andquantitative data, totaling 24,847 unique georeferenced records. The geographic range is fromthe southern United States, Mexico, and Caribbean countries at the northern portion of theNeotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regardinganteaters,Myrmecophaga tridactylahas the most records (n=5,941), andCyclopessp. havethe fewest (n=240). The armadillo species with the most data isDasypus novemcinctus(n=11,588), and the fewest data are recorded forCalyptophractus retusus(n=33). Withregard to sloth species,Bradypus variegatushas the most records (n=962), andBradypus pyg-maeushas the fewest (n=12). Our main objective with Neotropical Xenarthrans is to makeoccurrence and quantitative data available to facilitate more ecological research, particularly ifwe integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, andNeotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure,habitat loss, fragmentation effects, species invasion, and climate change effects will be possiblewith the Neotropical Xenarthrans data set. Please cite this data paper when using its data inpublications. We also request that researchers and teachers inform us of how they are usingthese data

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore