16 research outputs found

    A Toxin-Antitoxin Module in Bacillus subtilis Can Both Mitigate and Amplify Effects of Lethal Stress

    Get PDF
    Bacterial type-2 (protein-protein) toxin-antitoxin (TA) modules are two-gene operons that are thought to participate in the response to stress. Previous work with Escherichia coli has led to a debate in which some investigators conclude that the modules protect from stress, while others argue that they amplify lethal stress and lead to programmed cell death. To avoid ambiguity arising from the presence of multiple TA modules in E. coli, the effect of the sole type-2 toxin-antitoxin module of Bacillus subtilis was examined for several types of lethal stress.Genetic knockout of the toxin gene, ndoA (ydcE), conferred protection to lethal stressors that included kanamycin, moxifloxacin, hydrogen peroxide, and UV irradiation. However, at low doses of UV irradiation the ndoA deficiency increased lethality. Indeed, gradually increasing UV dose with the ndoA mutant revealed a crossover response--from the mutant being more sensitive than wild-type cells to being less sensitive. For high temperature and nutrient starvation, the toxin deficiency rendered cells hypersensitive. The ndoA deficiency also reduced sporulation frequency, indicating a role for toxin-antitoxin modules in this developmental process. In the case of lethal antimicrobial treatment, deletion of the toxin eliminated a surge in hydrogen peroxide accumulation observed in wild-type cells.A single toxin-antitoxin module can mediate two opposing effects of stress, one that lowers lethality and another that raises it. Protective effects are thought to arise from toxin-mediated inhibition of translation based on published work. The enhanced, stress-mediated killing probably involves toxin-dependent accumulation of reactive oxygen species, since a deficiency in the NdoA toxin suppressed peroxide accumulation following antimicrobial treatment. The type and perhaps the level of stress appear to be important for determining whether this toxin will have a protective or detrimental effect

    Analysis of protein carbonylation - pitfalls and promise in commonly used methods

    Get PDF
    Abstract Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the patho-physiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientist became more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods

    Targeting BET proteins improves the therapeutic efficacy of BCL-2 inhibition in T-cell acute lymphoblastic leukemia

    Full text link
    Inhibition of anti-apoptotic BCL-2 has recently emerged as a promising new therapeutic strategy for the treatment of a variety of human cancers, including leukemia. Here, we used T-cell acute lymphoblastic leukemia as a model system to identify novel synergistic drug combinations with the BH3 mimetic venetoclax (ABT-199). In vitro drug screening in primary leukemia specimens that were derived from patients with high risk of relapse or relapse and cell lines revealed synergistic activity between venetoclax and the BET bromodomain inhibitor JQ1. Notably, this drug synergism was confirmed in vivo using T-ALL cell line and patient-derived xenograft models. Moreover, the therapeutic benefit of this drug combination might, at least in part, be mediated by an acute induction of the pro-apoptotic factor BCL2L11 and concomitant loss of BCL-2 upon BET bromodomain inhibition, ultimately resulting in an enhanced binding of BIM (encoded by BCL2L11) to BCL-2. Altogether, our work provides a rationale to develop a new type of targeted combination therapy for selected subgroups of high-risk leukemia patients.Leukemia accepted article preview online, 11 January 2017. doi:10.1038/leu.2017.10

    Arginine residues as stabilizing elements in proteins

    No full text
    Site-specific substitutions of arginine for lysine in the thermostable D-xylose isomerase (XI) from Actinoplanes missouriensis are shown to impart significant heat stability enhancement in the presence of sugar substrates most probably by interfering with nonenzymatic glycation. The same substitutions are also found to increase beat stability in the absence of any sugar derivatives, where a mechanism based on prevention of glycation can no longer be invoked. This rather conservative substitution is moreover shown to improve thermostability in two other structurally unrelated proteins, human copper, zinc-superoxide dismutase (CuZnSOD) and D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus subtilis. The stabilizing effect of Lys --> Arg substitutions is rationalized on the basis of a detailed analysis of the crystal structures of wild-type XI and of engineered variants with Lys --> Arg substitution at four distinct locations, residues 253, 309, 319, and 323. Molecular model building analysis of the structures of wild-type and mutant CuZnSOD (K9R) and GAPDH (G281K and G281R) is used to explain the observed stability enhancement in these proteins. In addition to demonstrating that even thermostable proteins can lend themselves to further stability improvement, our findings provide direct evidence that arginine residues are important stabilizing elements in proteins. Moreover, the stabilizing role of electrostatic interactions, particularly between subunits in oligomeric proteins, is documented

    RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia.

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with inferior outcome compared to B-cell ALL. Here, we showed that Runt-related transcription factor 2, RUNX2 was upregulated in high-risk T-ALL with KMT2A rearrangements (KMT2A-R) or an immature immunophenotype. In KMT2A-R cells, we identified RUNX2 as a direct target of the KMT2A chimeras, where it reciprocally bound the KMT2A promoter, establishing a regulatory feed-forward mechanism. Notably, RUNX2 was required for survival of immature and KMT2A-R T-ALL cells in vitro and in vivo. We reported direct transcriptional regulation of CXCR4 signaling by RUNX2, thereby promoting chemotaxis, adhesion and homing to medullary and extramedullary sites. RUNX2 enabled these energy-demanding processes by increasing metabolic activity in T-ALL cells through positive regulation of both glycolysis and oxidative phosphorylation. Concurrently, RUNX2 upregulation increased mitochondrial dynamics and biogenesis in T-ALL cells. Finally, as a proof of concept, we demonstrated that immature and KMT2A-R T-ALL cells were vulnerable to pharmacological targeting of the interaction between RUNX2 and its co-factor CBFβ. In conclusion, we showed that RUNX2 acts as a dependency factor in high-risk subtypes of human T-ALL through concomitant regulation of tumour metabolism and leukemic cell migration
    corecore