6 research outputs found

    Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se<sub>2</sub> Grain Boundaries: Correlation with Microstructure

    No full text
    Solar cells containing a polycrystalline Cu­(In,Ga)­Se<sub>2</sub> absorber outperform the ones containing a monocrystalline absorber, showing a record efficiency of 22.9%. However, the grain boundaries (GBs) are very often considered to be partly responsible for the enhanced recombination activity in the cell and thus cannot explain the registered record efficiency. Therefore, in the present work, we resolve this conundrum by performing correlative electron beam-induced current–electron backscatter diffraction investigations on more than 700 grain boundaries and demonstrating that 58% of the grain boundaries exhibit an enhanced carrier collection compared to the grain interior. Enhanced carrier collection thus indicates that GBs are beneficial for the device performance. Moreover, 27% of the grain boundaries are neutral and 15% are recombination-active. Correlation with microstructure shows that most of the ∑3 GBs are neutral, whereas the random high-angle grain boundaries are either beneficial or detrimental. Enhanced carrier collection observed for a big fraction of high-angle grain boundaries supports the “type-inversion” model and hence the downward band bending at GBs. The decrease in current collection observed at one of the high-angle grain boundaries is explained by Cu being enriched at this GB and hence by the upward shift of the valence band maximum

    Infrared Resonance Tuning of Nanoslit Antennas with Phase-Change Materials

    No full text
    Phase-change materials (PCMs) have been established as prime candidates for nonvolatile resonance tuning of nanophotonic components based on a large optical contrast between their amorphous and crystalline states. Recently, the plasmonic PCM In3SbTe2 was introduced, which can be switched from an amorphous dielectric state to a crystalline metallic one over the entire infrared spectral range. While locally switching the PCM around metallic nanorod antennas has already been demonstrated, similar tuning of inverse antenna structures (nanoslits) has not yet been investigated. Here, we demonstrate optical resonance tuning of nanoslit antennas with dielectric and plasmonic PCMs. We compare two geometries with fundamentally different resonance tuning mechanisms: tuning the resonance of aluminum slit antennas by change of the refractive index (dielectric PCM Ge3Sb2Te6), and creating slit-like volumes of amorphous In3SbTe2 and modifying the slit geometry directly (plasmonic PCM In3SbTe2). While the tuning range with the plasmonic PCM is about 3.4 μm and only limited by fabrication, the resonances with the dielectric PCM feature a three times larger quality factor compared to resonances obtained with the plasmonic PCM

    Specific Heat of (GeTe)<sub><i>x</i></sub>(Sb<sub>2</sub>Te<sub>3</sub>)<sub>1–<i>x</i></sub> Phase-Change Materials: The Impact of Disorder and Anharmonicity

    No full text
    Phase-change materials (PCM) are bad glass formers, and their rapid crystallization is accompanied by a drastic change in optical and electrical properties, which opens opportunities for novel nonvolatile data storage devices. Many of these materials are located on the pseudobinary line between GeTe and Sb<sub>2</sub>Te<sub>3</sub> and form a metastable rock-salt-like atomic arrangement in which Te atoms occupy one of the two sublattices and the other is randomly filled with Ge and Sb atoms as well as vacancies. The resulting disorder has profound impact on, for example, transport properties, causing disorder-induced localization of charge carriers. Here we discuss the impact of disorder on thermal properties. We have investigated several PCMs from the pseudobinary line between GeTe and Sb<sub>2</sub>Te<sub>3</sub>. A significant enhancement of the specific heat is found for the disordered rock-salt-like phase compared with the ordered trigonal phase, in which Ge and Sb atoms occupy separate layers. The magnitude of this enhancement is correlated with the fraction of stoichiometric vacancies in the Ge/Sb sublattice. The additional contribution to the specific heat is shown to consist of a reversible fraction and an irreversible fraction, which are attributed to anharmonic lattice dynamics and irreversible vacancy ordering, respectively. These findings underline the prominent role of vacancy ordering in electrical and thermal transport

    Impact of Pressure on the Resonant Bonding in Chalcogenides

    No full text
    Resonant bonding has been appreciated as an important feature in some chalcogenides. The establishment of resonant bonding can significantly delocalize the electrons and shrink the band gap, leading to low electrical resistivity and soft optical phonons. Many materials that exhibit this bonding mechanism have applications in phase-change memory and thermoelectric devices. Resonant bonding can be tuned by various means, including thermal excitations and changes in composition. In this work, we manipulate it by applying large hydrostatic-like pressure. Synchrotron X-ray diffraction and density functional theory reveal that the orthorhombic lattice of GeSe appears to become more symmetric and the Born effective charge has significantly increased at high pressure, indicating that resonant bonding has been established in this material. In contrast, the resonant bonding is partially weakened in PbSe at high pressure due to the discontinuity of chemical bonds along a certain lattice direction. By controlling resonant bonding in chalcogenides, we are able to modify the material properties and tailor them for various applications in extreme conditions

    Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    No full text
    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that <i>N</i>,<i>N</i>-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics

    Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials

    No full text
    Dislocations have been considered to be an efficient source for scattering midfrequency phonons, contributing to the enhancement of thermoelectric performance. The structure of dislocations can be resolved by electron microscopy whereas their chemical composition and decoration state are scarcely known. Here, we correlate transmission Kikuchi diffraction and (scanning) transmission electron microscopy in conjunction with atom probe tomography to investigate the local structure and chemical composition of dislocations in a thermoelectric Ag-doped PbTe compound. Our investigations indicate that Ag atoms segregate to dislocations with a 10-fold excess of Ag compared with its average concentration in the matrix. Yet the Ag concentration along the dislocation line is not constant but fluctuates from ∼0.8 to ∼10 atom % with a period of about 5 nm. Thermal conductivity is evaluated applying laser flash analysis, and is correlated with theoretical calculations based on the Debye–Callaway model, demonstrating that these Ag-decorated dislocations yield stronger phonon scatterings. These findings reduce the knowledge gap regarding the composition of dislocations needed for theoretical calculations of phonon scattering and pave the way for extending the concept of defect engineering to thermoelectric materials
    corecore