72 research outputs found

    Entwicklung eines integrierten multifunktionalen Fluoreszenzdetektors

    Get PDF
    Fluoreszenzdetektion hat eine große Bedeutung in biologischen und medizinischen Anwendungen fĂŒr die Analyse verschiedener Farbstoffe und Zellkulturen. Durch Kombination von Fluidik, Optik und Elektronik ist die Realisierung eines kompakten und hochempfindlichen Messsystems möglich, welches vorteilhaft bei der Messung von Proben mit kleinen Volumina ist

    Permafrost

    Get PDF
    Permafrost is perennially frozen ground, such as soil, rock, and ice. In permafrost regions, plant and microbial life persists primarily in the near-surface soil that thaws every summer, called the ‘active layer’ (Figure 20). The cold and wet conditions in many permafrost regions limit decomposition of organic matter. In combination with soil mixing processes caused by repeated freezing and thawing, this has led to the accumulation of large stocks of soil organic carbon in the permafrost zone over multi-millennial timescales. As the climate warms, permafrost carbon could be highly vulnerable to climatic warming. Permafrost occurs primarily in high latitudes (e.g. Arctic and Antarctic) and at high elevation (e.g. Tibetan Plateau, Figure 21). The thickness of permafrost varies from less than 1 m (in boreal peatlands) to more than 1 500 m (in Yakutia). The coldest permafrost is found in the Transantarctic Mountains in Antarctica (−36°C) and in northern Canada for the Northern Hemisphere (-15°C; Obu et al., 2019, 2020). In contrast, some of the warmest permafrost occurs in peatlands in areas with mean air temperatures above 0°C. Here permafrost exists because thick peat layers insulate the ground during the summer. Most of the permafrost existing today formed during cold glacials (e.g. before 12 000 years ago) and has persisted through warmer interglacials. Some shallow permafrost (max 30–70m depth) formed during the Holocene (past 5000 years) and some even during the Little Ice Age from 400–150 years ago. There are few extensive regions suitable for row crop agriculture in the permafrost zone. Additionally, in areas where large-scale agriculture has been conducted, ground destabilization has been common. Surface disturbance such as plowing or trampling of vegetation can alter the thermal regime of the soil, potentially triggering surface subsidence or abrupt collapse. This may influence soil hydrology, nutrient cycling, and organic matter storage. These changes often have acute and negative consequences for continued agricultural use of such landscapes. Thus, row-crop agriculture could have a negative impact on permafrost (e.g. GrĂŒnzweig et al., 2014). Conversely, animal husbandry is widespread in the permafrost zone, including horses, cattle, and reindeer

    A prospective multi-center cohort study of acute non-displaced fractures of the scaphoid: operative versus non-operative treatment [NCT00205985]

    Get PDF
    BACKGROUND: Acute scaphoid fractures are common in active adults and do lead to reasonable time lost to work. One important goal of treatment is early return to work or sport. On this background, the adequate treatment of non-displaced acute scaphoid fractures is still under discussion. The aim of this study is to compare time to return to previous activity level comparing surgical versus non-surgical treatment of non-displaced acute scaphoid fractures. METHODS/DESIGN: The study is designed as a non-randomized multiple center cohort study including 12 sites in Germany and Austria. The inclusion period is planned to be 12 months with a follow up of 6 months. Allocation to operative or non-operative treatment is choosen by the patient together with his treating surgeon. The primary outcome is time to return to previous activity level adapted for loading of the wrist in daily life as measured by a newly developed questionnaire (PLDL-wrist). Factors identified a priori to be associated with the outcome, e.g., poverty status, age, education, smoking status, gender, and occupation, are measured to ensure adequate control for their potential confounding effects. DISCUSSION: The rationale and the design of a multiple center cohort study are presented. As it is not considered feasible to randomize patients in this study, potential confounding effects need to be controlled adequately

    Aqueous chemistry of transactinides

    No full text

    The chemistry of superheavy elements

    No full text

    First aqueous chemistry with seaborgium.

    No full text

    Chemistry of Superheavy Elements

    No full text

    First aqueous chemistry with seaborgium (element 106)

    No full text

    Chemistry of superheavy elements

    No full text
    AbstractThe chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators (“pre-separator”) are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table.</jats:p

    Prospects of heavy and superheavy element production via inelastic nucleus-nucleus collisions – from 238U+238U to18O+254Es

    No full text
    Multi-nucleon transfer reactions, frequently termed deep-inelastic, between heavy-ion projectiles and actinide targets provide prospects to synthesize unknown isotopes of heavy actinides and superheavy elements with neutron numbers beyond present limits. The 238U on 238U reaction, which revealed essential aspects of those nuclear reactions leading to surviving heavy nuclides, mainly produced in 3n and 4n evaporation channels, is discussed in detail. Positions and widths of isotope distributions are compared. It is shown, as a general rule, that cross sections peak at irradiation energies about 10% above the Coulomb barrier. Heavy target nuclei are essential for maximizing cross sections. Experimental results from the 238U on 248Cm reaction, including empirical extrapolations, are compared with theoretical model calculations predicting relatively high cross sections for neutron-rich nuclei. Experiments to test the validity of such predictions are proposed. Comparisons between rather symmetric heavy-ion reactions like 238U on 248Cm (or heavier targets up to 254Es) with very asymmetric ones like 18O on 254Es reveal that the ones with 238U as a projectile have the highest potential in the superheavy element region while the latter ones can be advantageous for the synthesis of heavy actinide isotopes. Concepts for highly efficient recoil separators designed for transfer products are presented
    • 

    corecore