24 research outputs found

    Imagined paralysis reduces motor cortex excitability.

    Get PDF
    Mental imagery is a powerful capability that engages similar neurophysiological processes that underlie real sensory and motor experiences. Previous studies show that motor cortical excitability can increase during mental imagery of actions. In this study, we focused on possible inhibitory effects of mental imagery on motor functions. We assessed whether imagined arm paralysis modulates motor cortical excitability in healthy participants, as measured by motor evoked potentials (MEPs) of the hand induced by near-threshold transcranial magnetic stimulation (TMS) over the primary motor cortex hand area. We found lower MEP amplitudes during imagined arm paralysis when compared to imagined leg paralysis or baseline stimulation without paralysis imagery. These results show that purely imagined bodily constraints can selectively inhibit basic motor corticospinal functions. The results are discussed in the context of motoric embodiment/disembodiment

    Low serum zinc levels predict presence of depression symptoms, but not overall disease outcome, regardless of ATG16L1 genotype in Crohn's disease patients.

    Get PDF
    Zinc deficiency (ZD) in Crohn's disease (CD) is considered a frequent finding and may exacerbate CD activity. ZD is associated with depression in non-CD patients. We aimed to assess the prevalence of ZD in CD patients in clinical remission, its association with mood disturbances and to analyze a potential impact on future disease course. Zinc levels from CD patients in clinical remission at baseline and an uncomplicated disease course within the next 3 years ( <i>n</i> = 47) were compared with those from patients developing complications ( <i>n</i> = 50). Baseline symptoms of depression and anxiety were measured with the Hospital Anxiety and Depression scale. Mean zinc level in the 97 patients (40.4 ± 15.7 years, 44.3% males) was 18.0 ± 4.7 μmol/l. While no ZD (<11 μmol/l) was observed, we found low zinc levels (<15.1 μmol/l) in 28 patients (28.9%). Males had higher zinc levels compared with females (19.4 ± 5.7 <i>versus</i> 16.8 ± 3.3, <i>p</i> = 0.006). Patients with low zinc levels more often reported depression symptoms compared with patients with higher levels (27.3 <i>versus</i> 9.4%, <i>p</i> = 0.047). In a multivariate analysis, zinc levels were an independent negative predictor for depression symptoms [odds ratio (OR) 0.727, 95% confidence interval (CI) 0.532-0.993, <i>p</i> = 0.045]. Zinc levels of patients with a complicated disease course were not different from those of patients without (17.7 ± 4.3 <i>versus</i> 18.3 ± 5.1, n.s.). Baseline zinc levels did not predict disease outcome regardless of ATG16L1 genotype. Low-normal zinc levels were an independent predictor for the presence of depression symptoms in CD patients. Zinc levels at baseline did not predict a complicated disease course, neither in CD patients overall, nor ATG16L1 <sup>T300A</sup> carriers

    The Traumatic Inoculation Process Affects TSPO Radioligand Uptake in Experimental Orthotopic Glioblastoma

    Get PDF
    Background: The translocator protein (TSPO) has been proven to have great potential as a target for the positron emission tomography (PET) imaging of glioblastoma. However, there is an ongoing debate about the potential various sources of the TSPO PET signal. This work investigates the impact of the inoculation-driven immune response on the PET signal in experimental orthotopic glioblastoma. Methods: Serial [F-18]GE-180 and O-(2-[F-18]fluoroethyl)-L-tyrosine ([F-18]FET) PET scans were performed at day 7/8 and day 14/15 after the inoculation of GL261 mouse glioblastoma cells (n = 24) or saline (sham, n = 6) into the right striatum of immunocompetent C57BL/6 mice. An additional n = 25 sham mice underwent [F-18]GE-180 PET and/or autoradiography (ARG) at days 7, 14, 21, 28, 35, 50 and 90 in order to monitor potential reactive processes that were solely related to the inoculation procedure. In vivo imaging results were directly compared to tissue-based analyses including ARG and immunohistochemistry. Results: We found that the inoculation process represents an immunogenic event, which significantly contributes to TSPO radioligand uptake. [F-18]GE-180 uptake in GL261-bearing mice surpassed [F-18]FET uptake both in the extent and the intensity, e.g., mean target-to-background ratio (TBRmean) in PET at day 7/8: 1.22 for [F-18]GE-180 vs. 1.04 for [F-18]FET, p < 0.001. Sham mice showed increased [F-18]GE-180 uptake at the inoculation channel, which, however, continuously decreased over time (e.g., TBRmean in PET: 1.20 at day 7 vs. 1.09 at day 35, p = 0.04). At the inoculation channel, the percentage of TSPO/IBA1 co-staining decreased, whereas TSPO/GFAP (glial fibrillary acidic protein) co-staining increased over time (p < 0.001). Conclusion: We identify the inoculation-driven immune response to be a relevant contributor to the PET signal and add a new aspect to consider for planning PET imaging studies in orthotopic glioblastoma models

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Comparative untargeted metabolomics analysis of the psychostimulants 3,4-methylenedioxy-methamphetamine (MDMA), amphetamine, and the novel psychoactive substance mephedrone after controlled drug administration to humans

    Get PDF
    Psychoactive stimulants are a popular drug class which are used recreationally. Over the last decade, large numbers of new psychoactive substances (NPS) have entered the drug market and these pose a worldwide problem to human health. Metabolomics approaches are useful tools for simultaneous detection of endogenous metabolites affected by drug use. They allow identification of pathways or characteristic metabolites, which might support the understanding of pharmacological actions or act as indirect biomarkers of consumption behavior or analytical detectability. Herein, we performed a comparative metabolic profiling of three psychoactive stimulant drugs 3,4-methylenedioxymethamphetamine (MDMA), amphetamine and the NPS mephedrone by liquid chromatography-high resolution mass spectrometry (LC-HRMS) in order to identify common pathways or compounds. Plasma samples were obtained from controlled administration studies to humans. Various metabolites were identified as increased or decreased based on drug intake, mainly belonging to energy metabolism, steroid biosynthesis and amino acids. Linoleic acid and pregnenolone-sulfate changed similarly in response to intake of all drugs. Overall, mephedrone produced a profile more similar to that of amphetamine than MDMA in terms of affected energy metabolism. These data can provide the basis for further in-depth targeted metabolome studies on pharmacological actions and search for biomarkers of drug use

    In vivo evidence for a lactate gradient from astrocytes to neurons

    Full text link
    The determination of lactate dynamics in brain tissue represents a challenge, partly because in vivo data at cellular resolution are not available. Here we monitored lactate in astrocytes and neurons of the primary somatosensory cortex of mice using the genetically-encoded FRET sensor Laconic in combination with two-photon laser scanning microscopy. An intravenous lactate injection rapidly increased the Laconic signal in both astrocytes and neurons, demonstrating high lactate permeability across the tissue. The signal increase was significantly smaller in astrocytes pointing to higher basal lactate levels in these cells, confirmed by a one-point in vivo calibration protocol.Trans-acceleration of the monocarboxylate transporter with pyruvate was able to reduce intracellular lactate in astrocytes but not in neurons. Collectively, this data provides in vivo evidence for a lactate gradient from astrocytes to neurons
    corecore