107 research outputs found

    Supporting measurements or more averages? How to quantify cerebral blood flow most reliably in 5 minutes by arterial spin labeling

    Get PDF
    Purpose To determine whether sacrificing part of the scan time of pseudo-continuous arterial spin labeling (PCASL) for measurement of the labeling efficiency and blood T1 is beneficial in terms of CBF quantification reliability. Methods In a simulation framework, 5-minute scan protocols with different scan time divisions between PCASL data acquisition and supporting measurements were evaluated in terms of CBF estimation variability across both noise and ground truth parameter realizations taken from the general population distribution. The entire simulation experiment was repeated for a single-post-labeling delay (PLD), multi-PLD, and free-lunch time-encoded (te-FL) PCASL acquisition strategy. Furthermore, a real data study was designed for preliminary validation. Results For the considered population statistics, measuring the labeling efficiency and the blood T1 proved beneficial in terms of CBF estimation variability for any distribution of the 5-minute scan time compared to only acquiring ASL data. Compared to single-PLD PCASL without support measurements as recommended in the consensus statement, a 26%, 33%, and 42% reduction in relative CBF estimation variability was found for optimal combinations of supporting measurements with single-PLD, free-lunch, and multi-PLD PCASL data acquisition, respectively. The benefit of taking the individual variation of blood T1 into account was also demonstrated in the real data experiment. Conclusions Spending time to measure the labeling efficiency and the blood T1 instead of acquiring more averages of the PCASL data proves to be advisable for robust CBF quantification in the general population

    Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL.

    Get PDF
    Dynamic susceptibility contrast MRI (DSC-MRI) tends to return elevated estimates of cerebral blood flow (CBF) and cerebral blood volume (CBV). In this study, subject-specific calibration factors (CFs), based on steady-state CBV measurements, were applied to rescale the absolute level of DSC-MRI CBF

    Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations

    Get PDF
    Cerebral small vessel disease (cSVD) comprises pathological processes of the small vessels in the brain that may manifest clinically as stroke, cognitive impairment, dementia, or gait disturbance. It is generally accepted that endothelial dysfunction, including blood-brain barrier (BBB) failure, is pivotal in the pathophysiology. Recent years have seen increasing use of imaging, primarily dynamic contrast-enhanced magnetic resonance imaging, to assess BBB leakage, but there is considerable variability in the approaches and findings reported in the literature. Although dynamic contrast-enhanced magnetic resonance imaging is well established, challenges emerge in cSVD because of the subtle nature of BBB impairment. The purpose of this work, authored by members of the HARNESS Initiative, is to provide an in-depth review and position statement on magnetic resonance imaging measurement of subtle BBB leakage in clinical research studies, with aspects requiring further research identified. We further aim to provide information and consensus recommendations for new investigators wishing to study BBB failure in cSVD and dementia. (C) 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 “<scp>ISMRM</scp> Imaging Neurofluids Study group” Workshop in Rome

    Get PDF
    Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three‐day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery.Evidence level: 1Technical Efficacy: Stage

    Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article

    Recommendations for quantitative cerebral perfusion MRI using multi‐timepoint arterial spin labeling: Acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article

    Quantifying the contrast of the human locus coeruleus in vivo at 7 Tesla MRI.

    No full text
    The locus coeruleus is a small brainstem nucleus which contains neuromelanin cells and is involved in a number of cognitive functions such as attention, arousal and stress, as well as several neurological and psychiatric disorders. Locus coeruleus imaging in vivo is generally performed using a T1-weighted turbo spin echo MRI sequence at 3 Tesla (T). However, imaging at high magnetic field strength can increase the signal-to-noise ratio and offers the possibility of imaging at higher spatial resolution. Therefore, in the present study we explored the possibility of visualizing the locus coeruleus at 7T. To this end, twelve healthy volunteers participated in three scanning sessions: two with 3T MRI and one with 7T MRI. The volumes of the first 3T session were used to segment the locus coeruleus, whereas the volumes of the second 3T and the 7T session were used to quantify the contrast of the locus coeruleus with several reference regions across eight different structural sequences. The results indicate that several of the 7T sequences provide detectable contrast between the locus coeruleus and surrounding tissue. Of the tested sequences, a T1-weighted sequence with spectral presaturation inversion recovery (SPIR) seems the most promising method for visualizing the locus coeruleus at ultra-high field MRI. While there is insufficient evidence to prefer the 7T SPIR sequence over the 3T TSE sequence, the isotropic voxels at 7T are an important advantage when visualizing small structures such as the locus coeruleus
    corecore