828 research outputs found

    Effects of parabolic flight and spaceflight on the endocannabinoid system in humans

    Get PDF
    The endocannabinoid system (ECS) plays an important role in the regulation of physiological functions, from stress and memory regulation to vegetative control and immunity. The ECS is considered a central and peripheral stress response system to emotional or physical challenges and acts through endocannabinoids (ECs), which bind to their receptors inducing subsequent effecting mechanisms. In our studies, the ECS responses have been assessed through blood concentrations of the ECs anandamide and 2-arachidonoylglycerol. In parallel, saliva cortisol was determined and the degree of perceived stress was quantified by questionnaires. This report summarizes the reactivity of the ECS in humans subjected to brief periods of kinetic stress and weightlessness during parabolic flights and to prolonged stress exposure during life onboard the International Space Station (ISS). Both conditions resulted in a significant increase in circulating ECs. Under the acute stress during parabolic flights, individuals who showed no evidence of motion sickness were in low-stress conditions and had a significant increase of plasma ECs. In contrast, highly stressed individuals with severe motion sickness had an absent EC response and a massive increase in hypothalamic-pituitary-adrenal axis activity. Likewise, chronic but well-tolerated exposure to weightlessness and emotional and environmental stressors on the ISS for 6 months resulted in a sustained increase in EC blood concentrations, which returned to baseline values after the cosmonauts' return. These preliminary results suggest that complex environmental stressors result in an increase of circulating ECs and that enhanced EC signaling is probably required for adaptation and tolerance under stressful conditions

    Motion sickness, stress and the endocannabinoid system

    Get PDF
    A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V) during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS) represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation

    Analysis of TLR2 Promotor Polymorphism in Chronic Sinusitis

    Get PDF

    Progranulin signaling in sepsis, community-acquired bacterial pneumonia and COVID-19: a comparative, observational study

    Get PDF
    BACKGROUND Progranulin is a widely expressed pleiotropic growth factor with a central regulatory effect during the early immune response in sepsis. Progranulin signaling has not been systematically studied and compared between sepsis, community-acquired pneumonia (CAP), COVID-19 pneumonia and a sterile systemic inflammatory response (SIRS). We delineated molecular networks of progranulin signaling by next-generation sequencing (NGS), determined progranulin plasma concentrations and quantified the diagnostic performance of progranulin to differentiate between the above-mentioned disorders using the established biomarkers procalcitonin (PCT), interleukin-6 (IL-6) and C-reactive protein (CRP) for comparison. METHODS The diagnostic performance of progranulin was operationalized by calculating AUC and ROC statistics for progranulin and established biomarkers in 241 patients with sepsis, 182 patients with SIRS, 53 patients with CAP, 22 patients with COVID-19 pneumonia and 53 healthy volunteers. miRNAs and mRNAs in blood cells from sepsis patients (n = 7) were characterized by NGS and validated by RT-qPCR in an independent cohort (n = 39) to identify canonical gene networks associated with upregulated progranulin at sepsis onset. RESULTS Plasma concentrations of progranulin (ELISA) in patients with sepsis were 57.5 (42.8-84.9, Q25-Q75) ng/ml and significantly higher than in CAP (38.0, 33.5-41.0~ng/ml, p < 0.001), SIRS (29.0, 25.0-35.0~ng/ml, p < 0.001) and the healthy state (28.7, 25.5-31.7~ng/ml, p < 0.001). Patients with COVID-19 had significantly higher progranulin concentrations than patients with CAP (67.6, 56.6-96.0 vs. 38.0, 33.5-41.0~ng/ml, p < 0.001). The diagnostic performance of progranulin for the differentiation between sepsis vs. SIRS (n = 423) was comparable to that of procalcitonin. AUC was 0.90 (95% CI = 0.87-0.93) for progranulin and 0.92 (CI = 0.88-0.96, p = 0.323) for procalcitonin. Progranulin showed high discriminative power to differentiate bacterial CAP from COVID-19 (sensitivity 0.91, specificity 0.94, AUC 0.91 (CI = 0.8-1.0) and performed significantly better than PCT, IL-6 and CRP. NGS and partial RT-qPCR confirmation revealed a transcriptomic network of immune cells with upregulated progranulin and sortilin transcripts as well as toll-like-receptor 4 and tumor-protein 53, regulated by miR-16 and others. CONCLUSIONS Progranulin signaling is elevated during the early antimicrobial response in sepsis and differs significantly between sepsis, CAP, COVID-19 and SIRS. This suggests that progranulin may serve as a novel indicator for the differentiation between these disorders. TRIAL REGISTRATION Clinicaltrials.gov registration number NCT03280576 Registered November 19, 2015

    Insights into the design and interpretation of iCLIP experiments

    Get PDF
    Abstract Background Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) identifies the sites on RNAs that are in direct contact with RNA-binding proteins (RBPs). Several variants of CLIP exist, which require different computational approaches for analysis. This variety of approaches can create challenges for a novice user and can hamper insights from multi-study comparisons. Here, we produce data with multiple variants of CLIP and evaluate the data with various computational methods to better understand their suitability. Results We perform experiments for PTBP1 and eIF4A3 using individual-nucleotide resolution CLIP (iCLIP), employing either UV-C or photoactivatable 4-thiouridine (4SU) combined with UV-A crosslinking and compare the results with published data. As previously noted, the positions of complementary DNA (cDNA)-starts depend on cDNA length in several iCLIP experiments and we now find that this is caused by constrained cDNA-ends, which can result from the sequence and structure constraints of RNA fragmentation. These constraints are overcome when fragmentation by RNase I is efficient and when a broad cDNA size range is obtained. Our study also shows that if RNase does not efficiently cut within the binding sites, the original CLIP method is less capable of identifying the longer binding sites of RBPs. In contrast, we show that a broad size range of cDNAs in iCLIP allows the cDNA-starts to efficiently delineate the complete RNA-binding sites. Conclusions We demonstrate the advantage of iCLIP and related methods that can amplify cDNAs that truncate at crosslink sites and we show that computational analyses based on cDNAs-starts are appropriate for such methods
    corecore