93 research outputs found

    Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere

    Full text link
    Three-dimensional numerical simulations with CO5BOLD, a new radiation hydrodynamics code, result in a dynamic, thermally bifurcated model of the non-magnetic chromosphere of the quiet Sun. The 3-D model includes the middle and low chromosphere, the photosphere, and the top of the convection zone, where acoustic waves are excited by convective motions. While the waves propagate upwards, they steepen into shocks, dissipate, and deposit their mechanical energy as heat in the chromosphere. Our numerical simulations show for the first time a complex 3-D structure of the chromospheric layers, formed by the interaction of shock waves. Horizontal temperature cross-sections of the model chromosphere exhibit a network of hot filaments and enclosed cool regions. The horizontal pattern evolves on short time-scales of the order of typically 20 - 25 seconds, and has spatial scales comparable to those of the underlying granulation. The resulting thermal bifurcation, i.e., the co-existence of cold and hot regions, provides temperatures high enough to produce the observed chromospheric UV emission and -- at the same time -- temperatures cold enough to allow the formation of molecules (e.g., carbon monoxide). Our 3-D model corroborates the finding by Carlsson & Stein (1994) that the chromospheric temperature rise of semi-empirical models does not necessarily imply an increase in the average gas temperature but can be explained by the presence of substantial spatial and temporal temperature inhomogeneities.Comment: 18 pages, 13 figures, accepted by Astronomy & Astrophysics (30/10/03

    The role of convection, overshoot, and gravity waves for the transport of dust in M dwarf and brown dwarf atmospheres

    Full text link
    Observationally, spectra of brown dwarfs indicate the presence of dust in their atmospheres while theoretically it is not clear what prevents the dust from settling and disappearing from the regions of spectrum formation. Consequently, standard models have to rely on ad hoc assumptions about the mechanism that keeps dust grains aloft in the atmosphere. We apply hydrodynamical simulations to develop an improved physical understanding of the mixing properties of macroscopic flows in M dwarf and brown dwarf atmospheres, in particular of the influence of the underlying convection zone. We performed 2D radiation hydrodynamics simulations including a description of dust grain formation and transport with the CO5BOLD code. The simulations cover the very top of the convection zone and the photosphere including the dust layers for effective temperatures between 900K and 2800K, all with logg=5 assuming solar chemical composition. Convective overshoot occurs in the form of exponentially declining velocities with small scale heights, so that it affects only the region immediately above the almost adiabatic convective layers. From there on, mixing is provided by gravity waves that are strong enough to maintain thin dust clouds in the hotter models. With decreasing effective temperature, the amplitudes of the waves become smaller but the clouds become thicker and develop internal convective flows that are more efficient in mixing material than gravity waves. The presence of clouds leads to a highly structured appearance of the stellar surface on short temporal and small spatial scales. We identify convectively excited gravity waves as an essential mixing process in M dwarf and brown dwarf atmospheres. Under conditions of strong cloud formation, dust convection is the dominant self-sustaining mixing component

    Solar abundances and 3D model atmospheres

    Full text link
    We present solar photospheric abundances for 12 elements from optical and near-infrared spectroscopy. The abundance analysis was conducted employing 3D hydrodynamical (CO5BOLD) as well as standard 1D hydrostatic model atmospheres. We compare our results to others with emphasis on discrepancies and still lingering problems, in particular exemplified by the pivotal abundance of oxygen. We argue that the thermal structure of the lower solar photosphere is very well represented by our 3D model. We obtain an excellent match of the observed center-to-limb variation of the line-blanketed continuum intensity, also at wavelengths shortward of the Balmer jump.Comment: Contributed paper, to be published in the proceedings of IAU Symposium 265, eds. K. Cunha, M. Spite, and B. Barbuy, Cambridge University Press (CUP). 2 figures, 4 page

    Radiation hydrodynamics simulations of dust clouds in the atmospheres of substellar objects

    Get PDF
    Molecules in the Atmospheres of Extrasolar Planets, proceedings of a conference held at Observatoire de Paris, Paris, France 19-21 November, 2008. ASP Conference Series, Vol. 450. Edited by J.P. Beaulieu, S. Dieteres, and G. Tinetti. San Francisco: Astronomical Society of the Pacific, 2011., p.125The temperature structure and the motions in the atmospheres of cool stars are affected by the underlying convection zone. The radiation hy- drodynamics code CO5BOLD has been developed to simulate (small patches of the) convective surface layers of these stars. Updated opacity tables based on PHOENIX data and a description for the formation, destruction, advective transport, and settling of dust have made the code fit to handle the conditions in brown dwarf atmospheres. Currently, objects from 8500K down to about 900K have been simulated. Recently, incident radiation has been included, allow- ing simulations with conditions found on hot planets. In non-irradiated brown dwarf models we encounter mixing by gravity waves and in the cooler models convection within the clouds. The qualitative effects of incident radiation are surprisingly small, as long as the effective temperature of the object stays well below the dust condensation temperature. Beyond that point, there are no layers where dust could form, anymore

    Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere

    Get PDF
    to be published in Solar PhysicsIn the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This ``decrease'' with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO5BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations depend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not reponsible for the systematic lowering of the solar abundances in recent years. The solar metallicity resulting from this analysis is Z=0.0153, Z/X=0.0209

    Identification of Two Distinct Working Memory-Related Brain Networks in Healthy Young Adults

    Get PDF
    Working memory (WM) is an important cognitive domain for everyday life functioning and is often disturbed in neuropsychiatric disorders. Functional magnetic resonance imaging (fMRI) studies in humans show that distributed brain areas typically described as fronto-parietal regions are implicated in WM tasks. Based on data from a large sample of healthy young adults (; N; = 1369), we applied independent component analysis (ICA) to the WM-fMRI signal and identified two distinct networks that were relevant for differences in individual WM task performance. A parietally-centered network was particularly relevant for individual differences in task measures related to WM performance ("WM dependent") and a frontally-centered network was relevant for differences in attention-dependent task performance. Importantly, frontal areas that are typically considered as key regions for WM were either involved in both WM-dependent and attention-dependent performance, or in attention-dependent performance only. The networks identified here are provided as publicly available datasets. These networks can be applied in future studies to derive a low-dimensional representation of the overall WM brain activation

    Digitalisierung beruflicher Lern- und Arbeitsprozesse. Impulse aus der Bauwirtschaft und anderen gewerblich-technischen Sektoren

    Get PDF
    Der Sammelband stellt aktuelle Ansätze zum digital unterstützten beruflichen Lernen dar. Die Beiträge geben Einblicke in die dynamische Entwicklung der Schnittstellen von Erwerbsarbeit und beruflicher Aus-, Fort- und Weiterbildung im Kontext der Digitalisierung Arbeits- und Lernmitteln. Der Band schließt damit an die 2019 ebenfalls im Universitätsverlag der Technischen Universität Berlin erschienene Publikation „Berufsbildung am Bau digital“ (hrsg. von Bernd Mahrin und Johannes Meyser) an. Das erste Kapitel erörtert grundsätzliche didaktische Fragen zu digital unterstütztem Lernen und Arbeiten einschließlich der Rahmenbedingungen. Im zweiten Kapitel schließen sich Beiträge zur Kapazitätsentwicklung, zu Standards und zu digitalen Werkzeugen an. Das dritte Kapitel widmet sich konkreten Einzellösungen mit starkem Praxisbezug und hohem Transferpotenzial zum digitalisierten Arbeiten und Lernen im Bausektor und im Metallbereich. Das abschließende vierte Kapitel präsentiert übergreifend nutzbare und frei zugängliche Online-Angebote wie einen Medienpool für Bildungszwecke, eine Lernmedien-Datenbank und ein hybrides Lernsystem mit virtuellem 3D-Gebäudemodell. Das Buch ist entstanden im Rahmen des durch das Bundesministerium für Bildung und Forschung und den Europäischen Sozialfonds geförderten Projektes DigiBAU – Digitales Bauberufliches Lernen und Arbeiten. (DIPF/Orig.)The anthology presents current approaches to digitally supported professional learning. The articles provide insights into the dynamic development of the interfaces between gainful employment and vocational training and further education in the context of digitization of work and learning aids. The volume is thus connected to the publication “Berufsbildung am Bau digital” (edited by Bernd Mahrin and Johannes Meyser), which was published in 2019 by the University Press of the Technische Universität Berlin. The first chapter discusses fundamental didactic questions about digitally supported learning and working, including the framework conditions. The second chapter picks contributions on capacity development, standards, and digital tools out as central themes. The third chapter is dedicated to concrete specific solutions with strong practical relevance and high transfer potential for digitized work and learning in the construction sector and in the metal sector. The final fourth chapter presents comprehensive and freely accessible online offers such as a media pool for educational purposes, a learning media database and a hybrid learning system with a virtual 3D building model. The book was created as part of the DigiBAU project - digital vocational learning and working in the field of construction - funded by the German Federal Ministry of Education and Research and the European Social Fund. (DIPF/Orig.
    corecore