136 research outputs found

    Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves

    Get PDF
    This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Δlw) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isot

    Borehole Equilibration: Testing a New Method to Monitor the Isotopic Composition of Tree Xylem Water in situ

    Get PDF
    Forest water use has been difficult to quantify. One promising approach is to measure the isotopic composition of plant water, e.g., the transpired water vapor or xylem water. Because different water sources, e.g., groundwater versus shallow soil water, often show different isotopic signatures, isotopes can be used to investigate the depths from which plants take up their water and how this changes over time. Traditionally such measurements have relied on the extraction of wood samples, which provide limited time resolution at great expense, and risk possible artifacts. Utilizing a borehole drilled through a tree's stem, we propose a new method based on the notion that water vapor in a slow-moving airstream approaches isotopic equilibration with the much greater mass of liquid water in the xylem. We present two empirical data sets showing that the method can work in practice. We then present a theoretical model estimating equilibration times and exploring the limits at which the approach will fail. The method provides a simple, cheap, and accurate means of continuously estimating the isotopic composition of the source water for transpiration

    A Modeling Approach to Investigate Drivers, Variability and Uncertainties in O2 Fluxes and the O2 : CO2 Exchange Ratios in a Temperate Forest

    Get PDF
    The O2 : CO2 exchange ratio (ER) between terrestrial ecosystems and the atmosphere is a key parameter for partitioning global ocean and land carbon fluxes. The long-term terrestrial ER is considered to be close to 1.10 moles of O2 consumed per mole of CO2 produced. Due to the technical challenge in measuring directly the ER of entire terrestrial ecosystems (EReco), little is known about the variations in ER at the hourly and seasonal scales as well as how different components contribute to EReco. In this modeling study, we explore the variability and drivers of EReco and evaluate the hypothetical uncertainty in determining ecosystem O2 fluxes based on current instrument precision. We adapted the one-dimensional, multi-layer atmosphere-biosphere gas exchange model, CANVEG, to simulate hourly EReco from modeled O2 and CO2 fluxes in a temperate beech forest in Germany. We found that the annual mean EReco ranged from 1.06 to 1.12 mol mol-1 within the five years&rsquo; study period. Hourly EReco showed strong variations over diel and seasonal cycles and within the vertical canopy profile. Determination of ER from O2 and CO2 mole fractions in air above and within the canopy (ERconc) varied between 1.115 and 1.15 mol mol-1. CANVEG simulations also indicated that ecosystem O2 fluxes could be derived using the flux-gradient method in combination with measurements of vertical scalar gradients and CO2, sensible heat or latent heat fluxes obtained with the eddy covariance technique. Owing to measurement uncertainties, however, the uncertainty in estimated O2 fluxes derived with the flux-gradient approach could be as high as 15 &mu;mol m-2 s-1, which represented the 90 % quantile of the uncertainty in hourly data with a high-accuracy instrument. We also demonstrated that O2 fluxes can be used to partition net CO2 exchange fluxes into their component fluxes of photosynthesis and respiration, if EReco is known. The uncertainty of the partitioned gross assimilation ranged from 1.43 to 4.88 &mu;mol m-2 s-1 assuming a measurement uncertainty of 0.1 or 2.5 &mu;mol m-2 s-1 for net ecosystem CO2 exchange and from 0.1 to 15 &mu;mol m-2 s-1 for net ecosystem O2 exchange, respectively. Our analysis suggests that O2 measurements at ecosystem scale have the potential for partitioning net CO2 fluxes into their component fluxes, but further improvement in instrument precision is needed.</p

    Observations of atmospheric variability and soil exhalation rate of 222Radon at a Russian forest site: Technical approach and deployment for boundary layer studies

    Get PDF
    A monitor for continuous observations of the atmospheric 222Rn daughter activity has been improved and successfully implemented in a field study at a Russian site (Fyodorovskoye Forest Reserve). The alpha-activity of the short-lived 222Rn and 220Rn (212Pb) decay products, which are attached to aerosols, is accumulated on a quartz aerosol filter and assayed on-line by alpha-spectroscopy. The alpha-activity from the 212Pb daughters is determined by spectroscopy and corrected for. This monitor is suitable to measure 222Rn activities at hourly resolution down to 0.5 Bq m-3 with an uncertainty well below ±20%. The prototype of this monitor is run in Heidelberg on the roof of the Institute’s building about 20 m above ground. For this site, the atmospheric radioactive disequilibrium was determined between the 222Rn daughter 214Po and 222Rn, which has to be known to derive the atmospheric 222Rn activity with the static filter method. We derived a mean disequilibrium 214Po/222Rn = 0.704±0.081 for various meteorological conditions through parallel 222Rn gas measurements with a slow pulse ionisation chamber. At the Russian field site, continuous activity observations were performed from July 1998 until July 2000 with half a year interruption in summer/fall 1999. During intensive campaigns, a second monitor was installed at Fyodorovskoye at 15.6 m (July/August 1998), and at 1.8 m (July/August 1999 and October 1999) above ground. Pronounced diurnal cycles of the 222Rn daughter activity were observed at all sites, particularly during summer when the vertical mixing conditions in the atmospheric surface layer vary strongly between day and night. The lower envelope of the continuous measurements at Fyodorovskoye and at Heidelberg changes on synoptic time scales by a factor of 4 to 10 due to long-range transport changes between continental to more maritime situations. Generally, the 222Rn activity at 26.3 m height at Fyodorovskoye is lower by a factor of 2 to 3 compared to Heidelberg at 20 m above ground. This unexpected result is due to considerably lower 222Rn exhalation rates from the soils measured in the footprint of the Fyodorovskoye Forest tower compared to Heidelberg. With the inverted chamber technique 222Rn exhalation rates in the range of 3.3 to 7.9 Bq m-2 h-1 were determined at Fyodorovskoye for summer 1998 and autumn 1999 (wet conditions with water table depths between 5 and 70 cm). Only during the very dry summer in 1999 the mean 222Rn exhalation rate increased by about a factor of five. All measured exhalation rates at the Fyodorovskoye Forest are considerably smaller by a factor of 2-10 compared to what we observe in the vicinity of Heidelberg (ca. 50 to 60 Bq m-2 h-1) and generally in Western Europe

    Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Get PDF
    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought

    Einfluss des Faktors Wortfrequenz auf die satzinterne Großschreibung bei Fünftklässler:innen

    Get PDF
    Frequenz ist ein vielbeachteter Faktor, wenn es darum geht, zu erklären, warum manche Wörter und Teilbereiche von Wörtern eher fehleranfälliger sind als andere. In regelhaften Bereichen der Orthographie haben viele Studien zudem gezeigt, dass Frequenz einen größeren Einfluss auf Richtigschreibungen haben könnte als regelbasiertes Lernen. Der vorliegende Beitrag nimmt dies zum Ausgangspunkt und untersucht, ob der Faktor der Wortfrequenz in der satzinternen Großschreibung eine Rolle spielt. Die Arbeit umfasst zwei Forschungsfragen: (1) Sagt die Wortfrequenz von Nomen deren Großschreibung voraus, wenn man Konkretheit kontrolliert? und (2) Sagt die Frequenz von Verben und Adjektiven in Bezug auf die Frequenz der entsprechenden Nominalisierungen die Großschreibung letzterer voraus? Für die Untersuchung wurde die Großschreibung von 185 luxemburgischen Fünftklässler:innen in Lücken- und Satzdiktaten analysiert. Die Frequenz wurde aufgrund von drei Korpora berechnet. Die Regressionsanalysen zeigen das frequente Nomen eher großgeschrieben werden als seltene Nomen. Allerdings verschwindet dieser Effekt, wenn der lexikalisch-semantische Typ (Konkreta, Abstrakta, Nominalisierungen) in die Analysen einbezogen wird. Der ausschlaggebende Faktor für die Großschreibung in dieser Studie war schließlich Konkretheit, nicht Frequenz
    corecore