184 research outputs found

    Transient stress evolution in repulsion and attraction dominated glasses

    Full text link
    We present results from microscopic mode coupling theory generalized to colloidal dispersions under shear in an integration-through-transients formalism. Stress-strain curves in start-up shear, flow curves, and normal stresses are calculated with the equilibrium static structure factor as only input. Hard spheres close to their glass transition are considered, as are hard spheres with a short-ranged square-well attraction at their attraction dominated glass transition. The consequences of steric packing and physical bond formation on the linear elastic response, the stress release during yielding, and the steady plastic flow are discussed and compared to experimental data from concentrated model dispersions.Comment: J. Rheol., 58, in prin

    Overshoots in stress strain curves: Colloid experiments and schematic mode coupling theory

    Full text link
    The stress versus strain curves in dense colloidal dispersions under start-up shear flow are investigated combining experiments on model core-shell microgels, computer simulations of hard disk mixtures, and mode coupling theory. In dense fluid and glassy states, the transient stresses exhibit first a linear increase with the accumulated strain, then a maximum ('stress overshoot') for strain values around 5%, before finally approaching the stationary value, which makes up the flow curve. These phenomena arise in well-equilibrated systems and for homogeneous flows, indicating that they are generic phenomena of the shear-driven transient structural relaxation. Microscopic mode coupling theory (generalized to flowing states by integration through the transients) derives them from the transient stress correlations, which first exhibit a plateau (corresponding to the solid-like elastic shear modulus) at intermediate times, and then negative stress correlations during the final decay. We introduce and validate a schematic model within mode coupling theory which captures all of these phenomena and handily can be used to jointly analyse linear and large-amplitude moduli, flow curves, and stress-strain curves. This is done by introducing a new strain- and time-dependent vertex into the relation between the the generalized shear modulus and the transient density correlator.Comment: 21 pages, 13 figure

    Periodic orbit theory including spin degrees of freedom

    Full text link
    We summarize recent developments of the semiclassical description of shell effects in finite fermion systems with explicit inclusion of spin degrees of freedom, in particluar in the presence of spin-orbit interactions. We present a new approach that makes use of spin coherent states and a correspondingly enlarged classical phase space. Taking suitable limits, we can recover some of the earlier approaches. Applications to some model systems are presented.Comment: LaTeX2e, 10pp, 5 figs; contribution to 10th Nuclear Physics Workshop "Marie and Pierre Curie", 24 - 28 Sept. 2003, Kazimierz Dolny (Poland

    The Rise of Certificate Transparency and Its Implications on the Internet Ecosystem

    Full text link
    In this paper, we analyze the evolution of Certificate Transparency (CT) over time and explore the implications of exposing certificate DNS names from the perspective of security and privacy. We find that certificates in CT logs have seen exponential growth. Website support for CT has also constantly increased, with now 33% of established connections supporting CT. With the increasing deployment of CT, there are also concerns of information leakage due to all certificates being visible in CT logs. To understand this threat, we introduce a CT honeypot and show that data from CT logs is being used to identify targets for scanning campaigns only minutes after certificate issuance. We present and evaluate a methodology to learn and validate new subdomains from the vast number of domains extracted from CT logged certificates.Comment: To be published at ACM IMC 201

    Seasonality of microbial genetic functions in the Arctic Ocean revealed by autonomous sampling

    Get PDF
    The functional diversity of microbes along the seasonal extremes in the Arctic Ocean including the Polar Night are virtually unknown. Here, using PacBio long-read metagenomes derived from automated samplers over an annual cycle, we elucidate functional microbial seasonality in the Fram Strait in the context of a high-resolution amplicon time-series. In the ice-free West Spitsbergen Current, the transition from the phototrophy-dominated spring and summer ecosystem states to the dark winter was evident in bacterial genomes. Proteorhodopsin- and DMSP-utilizing genes peaked in late summer, marking a transition phase. Winter mixing of the water column covaried with microbial taxa encoding ammonia- and urea-metabolizing genes, with probable implications for nitrogen recycling and the following phytoplankton bloom. In the ice-covered East Greenland Current, functional diversity varied with the extent of ice cover and polar water masses. During intermittent low-ice conditions in winter, the metagenomic repertoire resembled that during summer, indicating rapidly (i.e. within weeks) shifting ecosystem states with ice cover. Overall, we provide a baseline to understand ecological and biogeochemical processes in a region severely affected by climate change, with implications for the present and future Arctic Ocean

    Case Report: Pediatric Renal Sarcoidosis and Prognostic Factors in Reviewed Cases

    Get PDF
    Background: Pediatric sarcoidosis is a complex inflammatory disorder with multisystemic manifestations. Kidney involvement in children is rare, and prognostic factors are unknown. Case Report and Methods: We report the case of a 16-year-old girl with multiorgan sarcoidosis and renal involvement. The patient presented with tubulointerstitial nephritis, acute kidney injury (AKI), chest CT disseminated noduli, granulomatous iridocyclitis, giant-cell sialadenitis, and arthralgia. The kidney biopsy revealed non-granulomatous interstitial nephritis. Treatment consisted of initial high-dose methylprednisolone pulse followed by oral prednisolone and methotrexate. Full remission was achieved. In addition, we performed a literature review using PubMed and analyzed data on pediatric renal sarcoidosis cases. Results: We identified 36 cases of pediatric sarcoidosis with renal involvement on presentation and data on the end-of-follow-up glomerular filtration rate (GFR). The data from the literature review showed that renal involvement was slightly more prevalent in males (60%). AKI was present in most of the described patients (84%). Oral prednisolone was used in 35 of 36 cases; in more severe cases, other immunosuppressants were used. We newly identified renal concentration impairment and granulomatous interstitial nephritis as factors with a clear trend toward GFR loss at the end of follow-up, emphasizing the importance of kidney biopsy in symptomatic patients. In contrast, higher GFR at presentation and hypercalcemia were rather favorable factors. According to the identified predictive factors, our patient has a good prognosis and is in remission. Conclusion: The factors indicating a trend toward an unfavorable renal outcome in pediatric sarcoidosis are renal concentration impairment and granulomatous interstitial nephritis at presentation, while a higher GFR is beneficial

    Sediment provenance in the Baker-Martínez fjord system (Chile, 48°s) indicated by magnetic susceptibility and inorganic geochemistry

    Get PDF
    Fjord sediments are increasingly used as high-resolution archives of climate and environmental change, including variations in glacier mass balance and terrestrial hydrology. To accurately interpret such sediment records, it is crucial to comprehend sediment transport processes and determine sediment provenance. With this in mind, our main objective is to identify cost-effective parameters that can be used to reconstruct relative variations in the origin of sediments deposited in the Baker-MartĂ­nez fjord system, which is located between the Northern (NPI) and Southern (SPI) Patagonian Icefields. We focus on estimating the proportions of sediment derived from each icefield, taking advantage of the clearly distinct lithologies that underlie NPI (Patagonian Batholith) and SPI (Eastern Andean Metamorphic Complex) glaciers. The magnetic susceptibility and inorganic geochemistry of 21 surface sediment samples collected along the fjord system and that of suspended sediment samples from the four main rivers that discharge at its heads were investigated. Results indicate that sediments derived from the NPI are characterized by higher magnetic susceptibility and log(Ti/Al) values than those from the SPI, reflecting the mafic nature of the batholith. In fjords that receive contributions from both the NPI and SPI, magnetic susceptibility and log(Ti/Al) primarily reflect sediment provenance. In fjords receiving sediment from only one icefield, however, these parameters are positively correlated with grain size and reflect the progressive settling of particles from the surficial plume. Our results suggest that magnetic susceptibility and log(Ti/Al) can be used to reconstruct sediment provenance within the Baker-MartĂ­nez fjord system, but that only log(Ti/Al) can provide quantitative estimates of the proportions of sediment derived from each icefield. Ultimately, applying these provenance indicators to long sediment cores from the Baker-MartĂ­nez fjord system could allow reconstructing relative variations in sediment input from each icefield, which may in turn be interpreted as changes in river discharge and/or glacier mass balance

    Sediment provenance indicated by magnetic susceptibility and inorganic geochemistry in the Baker-Martínez fjord system (Chile, 48°S)

    Get PDF
    Patagonian fjord sediments are increasingly used as high-resolution archives of past climate and environmental change, including variations in glacier mass balance, flood frequency, and seismic activity. To accurately interpret these proxy records, it is crucial to comprehend modern day sedimentation processes and determine the provenance of the sediments. With this in mind, the main objective of this study is to identify parameters that can be used to reconstruct sediment provenance in the fjords of Chilean Patagonia. We focus on the Baker-Martínez fjord system, which is located between the Northern and Southern Patagonian Icefields and seems particularly sensitive to climate change. This fjord system connects the terrestrial ecosystems of Patagonia with the SE Pacific Ocean, and most of its sediment originates from glacier-fed rivers draining either the Patagonian Batholith (PB; Baker and Huemules rivers) to the north, or the Eastern Andes Metamorphic Complex (EAMC; Bravo and Pascua rivers) to the south. Eighteen surface sediment samples from across the Baker-Martínez fjord system and 44 suspended sediment samples from two sequential (Baker fjord) and one continuous (Steffen fjord) sediment trap were investigated. In addition, we analyzed suspended sediment samples collected at the mouths of the four main rivers that drain the PB and EAMC to define end-members. We focus on mass-specific magnetic susceptibility (MS) and inorganic geochemistry, which seem to be particularly promising in this fjord system dominated by lithogenic sediments (97–85 wt%). Our results indicate that sediments derived from the PB are characterized by high MS, Ti/Al, and Fe/Al values, reflecting the granodioritic nature of the batholith (rich in pyroxene and amphibole). In contrast, sediments from the southern EAMC-derived rivers have significantly lower MS, Ti/Al, and Fe/Al values. The sediment trap results reveal MS values that increase with increasing Baker river discharge, either during the summer melt season, or during high precipitation events (rain-on-snow) in winter. Likewise, the MS, Ti/Al and Fe/Al values of the fjord surface sediments are also directly related to sediment provenance. In fjords fed by only one river (e.g., Martínez channel), however, the MS is significantly correlated with mean grain size (r = 0.90; p < 0.01) and with the proportion of lithogenic particles (r = 0.73; p < 0.05). The latter observation means that future research is needed to correct the MS and geochemical data for grain-size before using them as quantitative provenance indicators. This study suggests that, after grain-size correction, MS and inorganic geochemistry (Ti/Al and Fe/Al) can be used to reconstruct sediment provenance within the Baker-Martínez fjord system. Ultimately, applying these provenance indicators to long sediment cores from the same fjord system will allow us to reconstruct variations in the behavior of outlet glaciers from both icefields independently

    Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease

    Get PDF
    Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGFβ to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of α-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGFβ dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD
    • …
    corecore