31 research outputs found

    A Platform for Collaborative e-Science Applications

    Get PDF
    Abstract A novel, holistic, approach to scientific investigations should, besides analysis of individual phenomena, integrate different, interdisciplinary sources of knowledge about a complex system to obtain a deep understanding of the system as a whole. This innovative way of research, recently called system-level science [1], requires advanced software environments to support collaborating research groups. Most problem-solving environments and virtual laboratories In the ViroLab project The Virtual Laboratory (see The Experiment Planning Environment supports rapid experiment plan development while the Experiment Management Interface enables loading and execution of experiments. The Experiment Repository developers and published for future use. The virtual laboratory engi Operation Invoker which instantiates grid object repr operation invocations. The GridSpace Applic load balancing on computational servers. The Data Access Service remote databases located in research institutions and Fig. 1. Architecture of the Virtual Laboratory The provenance approach in the ViroLab virtual laboratory ontology-based semantic modeling, monitoring of infrastructure, and database technologies, in order to coll the execution of experiments, represent it in a meaningful way, repository. In the ViroLab project, this virtual laboratory is used to plan and virological experiments, with various types of analysis of as the calculation of drug resistance, querying historical and about experiments, a drug resistance system based on the Retrogram been applied to other application domains, such as comparison, data mining using the Weka library, series of Gaussian application on the EGEE infrastructure. computer science classes. We have developed an environment for collaborative planning, execution of e-Science applications. It facilitates fast, close cooperation and users so it may be used by groups of experts running In-silico experiments undergo frequent changes, this platform encourages quick, agile simulation software releasing

    Comparison of HIV-1 Genotypic Resistance Test Interpretation Systems in Predicting Virological Outcomes Over Time

    Get PDF
    Background: Several decision support systems have been developed to interpret HIV-1 drug resistance genotyping results. This study compares the ability of the most commonly used systems (ANRS, Rega, and Stanford's HIVdb) to predict virological outcome at 12, 24, and 48 weeks. Methodology/Principal Findings: Included were 3763 treatment-change episodes (TCEs) for which a HIV-1 genotype was available at the time of changing treatment with at least one follow-up viral load measurement. Genotypic susceptibility scores for the active regimens were calculated using scores defined by each interpretation system. Using logistic regression, we determined the association between the genotypic susceptibility score and proportion of TCEs having an undetectable viral load (<50 copies/ml) at 12 (8-16) weeks (2152 TCEs), 24 (16-32) weeks (2570 TCEs), and 48 (44-52) weeks (1083 TCEs). The Area under the ROC curve was calculated using a 10-fold cross-validation to compare the different interpretation systems regarding the sensitivity and specificity for predicting undetectable viral load. The mean genotypic susceptibility score of the systems was slightly smaller for HIVdb, with 1.92±1.17, compared to Rega and ANRS, with 2.22±1.09 and 2.23±1.05, respectively. However, similar odds ratio's were found for the association between each-unit increase in genotypic susceptibility score and undetectable viral load at week 12; 1.6 [95% confidence interval 1.5-1.7] for HIVdb, 1.7 [1.5-1.8] for ANRS, and 1.7 [1.9-1.6] for Rega. Odds ratio's increased over time, but remained comparable (odds ratio's ranging between 1.9-2.1 at 24 weeks and 1.9-2.

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Sensory Alterations in Patients with Isolated Idiopathic Dystonia: An Exploratory Quantitative Sensory Testing Analysis

    No full text
    Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings
    corecore