288 research outputs found
Advances in the proposed electromagnetic zero-point field theory of inertia
A NASA-funded research effort has been underway at the Lockheed Martin
Advanced Technology Center in Palo Alto and at California State University in
Long Beach to develop and test a recently published theory that Newton's
equation of motion can be derived from Maxwell's equations of electrodynamics
as applied to the zero-point field (ZPF) of the quantum vacuum. In this
ZPF-inertia theory, mass is postulated to be not an intrinsic property of
matter but rather a kind of electromagnetic drag force that proves to be
acceleration dependent by virtue of the spectral characteristics of the ZPF.
The theory proposes that interactions between the ZPF and matter take place at
the level of quarks and electrons, hence would account for the mass of a
composite neutral particle such as the neutron. An effort to generalize the
exploratory study of Haisch, Rueda and Puthoff (1994) into a proper
relativistic formulation has been successful. Moreover the principle of
equivalence implies that in this view gravitation would also be electromagnetic
in origin along the lines proposed by Sakharov (1968). With regard to exotic
propulsion we can definitively rule out one speculatively hypothesized
mechanism: matter possessing negative inertial mass, a concept originated by
Bondi (1957) is shown to be logically impossible. On the other hand, the linked
ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of
manipulation of inertia and gravitation, since both are postulated to be
electromagnetic phenomena. It is hoped that this will someday translate into
actual technological potential. A key question is whether the proposed
ZPF-matter interactions generating the phenomenon of mass might involve one or
more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no
figure
A novel method to create a vortex in a Bose-Einstein condensate
It has been shown that a vortex in a BEC with spin degrees of freedom can be
created by manipulating with external magnetic fields. In the previous work, an
optical plug along the vortex axis has been introduced to avoid Majorana flips,
which take place when the external magnetic field vanishes along the vortex
axis while it is created. In the present work, in contrast, we study the same
scenario without introducing the optical plug. The magnetic field vanishes only
in the center of the vortex at a certain moment of the evolution and hence we
expect that the system will lose only a fraction of the atoms by Majorana flips
even in the absence of an optical plug. Our conjecture is justified by
numerically solving the Gross-Pitaevskii equation, where the full spinor
degrees of freedom of the order parameter are properly taken into account. A
significant simplification of the experimental realization of the scenario is
attained by the omission of the optical plug.Comment: 8 pages, 11 figure
Evaluating the impact of the community-based health planning and services initiative on uptake of skilled birth care in Ghana
Background: the Community-based Health Planning and Services (CHPS) initiative is a major government policy to improve maternal and child health and accelerate progress in the reduction of maternal mortality in Ghana. However, strategic intelligence on the impact of the initiative is lacking, given the persistent ?problems of patchy geographical access to care for rural women. This study investigates the impact of proximity to CHPS on facilitating uptake of skilled ?birth care in rural areas.Methods and findings: data from the ?2003 and 2008 Demographic and Health Survey, ? on 4,349 births from 463 rural communities were linked to georeferenced data on health facilities, CHPS and topographic data on national road-networks. Distance to nearest health facility and CHPS was computed using the closest facility functionality in ArcGIS 10.1. Multilevel logistic regression was used to examine the effect of proximity to health facilities and CHPS on use of skilled care at birth, adjusting for relevant predictors and clustering within ?communities.? The results show that a substantial proportion of births continue to occur in communities more than 8 km from both ?health facilities and CHPS. Increases in uptake of skilled birth care are more pronounced where both health ?facilities and CHPS compounds are within 8 km, but not in communities within 8 km of CHPS but lack access to health facilities. Where both health facilities and CHPS are within 8 km, the odds of skilled ?birth care is 16% higher than ?where there is only a health facility within 8km. Conclusion: where CHPS compounds are set up near health facilities, there is improved access to care, demonstrating the facilitatory role of CHPS in stimulating access to better care at birth, in areas where health facilities are accessible. <br/
Axisymmetric versus Non-axisymmetric Vortices in Spinor Bose-Einstein Condensates
The structure and stability of various vortices in F=1 spinor Bose-Einstein
condensates are investigated by solving the extended Gross-Pitaevskii equation
under rotation. We perform an extensive search for stable vortices, considering
both axisymmetric and non-axisymmetric vortices and covering a wide range of
ferromagnetic and antiferromagnetic interactions. The topological defect called
Mermin-Ho (Anderson-Toulouse) vortex is shown to be stable for ferromagnetic
case. The phase diagram is established in a plane of external rotation Omega vs
total magnetization M by comparing the free energies of possible vortices. It
is shown that there are qualitative differences between axisymmetric and
non-axisymmetric vortices which are manifested in the Omega- and M-dependences.Comment: 9 pages, 9 figure
Faithful Squashed Entanglement
Squashed entanglement is a measure for the entanglement of bipartite quantum
states. In this paper we present a lower bound for squashed entanglement in
terms of a distance to the set of separable states. This implies that squashed
entanglement is faithful, that is, strictly positive if and only if the state
is entangled. We derive the bound on squashed entanglement from a bound on
quantum conditional mutual information, which is used to define squashed
entanglement and corresponds to the amount by which strong subadditivity of von
Neumann entropy fails to be saturated. Our result therefore sheds light on the
structure of states that almost satisfy strong subadditivity with equality. The
proof is based on two recent results from quantum information theory: the
operational interpretation of the quantum mutual information as the optimal
rate for state redistribution and the interpretation of the regularised
relative entropy of entanglement as an error exponent in hypothesis testing.
The distance to the set of separable states is measured by the one-way LOCC
norm, an operationally-motivated norm giving the optimal probability of
distinguishing two bipartite quantum states, each shared by two parties, using
any protocol formed by local quantum operations and one-directional classical
communication between the parties. A similar result for the Frobenius or
Euclidean norm follows immediately. The result has two applications in
complexity theory. The first is a quasipolynomial-time algorithm solving the
weak membership problem for the set of separable states in one-way LOCC or
Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show
that multiple provers are not more powerful than a single prover when the
verifier is restricted to one-way LOCC operations thereby providing a new
characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published
version, claims have been weakened from the LOCC norm to the one-way LOCC
nor
A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1
We have carried out a high statistics (2 Billion events) search for
ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3
and Hercules X-1. Using data taken with the CASA-MIA detector over a five year
period (1990-1995), we find no evidence for steady emission from either source
at energies above 115 TeV. The derived upper limits on such emission are more
than two orders of magnitude lower than earlier claimed detections. We also
find no evidence for neutral particle or gamma-ray emission from either source
on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for
emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of
large radio flares. Unless one postulates that these sources were very active
earlier and are now dormant, the limits presented here put into question the
earlier results, and highlight the difficulties that possible future
experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published
in Physical Review
From Coherent Modes to Turbulence and Granulation of Trapped Gases
The process of exciting the gas of trapped bosons from an equilibrium initial
state to strongly nonequilibrium states is described as a procedure of symmetry
restoration caused by external perturbations. Initially, the trapped gas is
cooled down to such low temperatures, when practically all atoms are in
Bose-Einstein condensed state, which implies the broken global gauge symmetry.
Excitations are realized either by imposing external alternating fields,
modulating the trapping potential and shaking the cloud of trapped atoms, or it
can be done by varying atomic interactions by means of Feshbach resonance
techniques. Gradually increasing the amount of energy pumped into the system,
which is realized either by strengthening the modulation amplitude or by
increasing the excitation time, produces a series of nonequilibrium states,
with the growing fraction of atoms for which the gauge symmetry is restored. In
this way, the initial equilibrium system, with the broken gauge symmetry and
all atoms condensed, can be excited to the state, where all atoms are in the
normal state, with completely restored gauge symmetry. In this process, the
system, starting from the regular superfluid state, passes through the states
of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the
state of normal chaotic fluid in turbulent regime. Both theoretical and
experimental studies are presented.Comment: Latex file, 25 pages, 4 figure
Technology as 'Applied Science': a Serious Misconception that Reinforces Distorted and Impoverished Views of Science
The current consideration of technology as 'applied science', this is to say, as something that comes 'after' science, justifies the lack of attention paid to technology in science education. In our paper we question this simplistic view of the science-technology relationship, historically rooted in the unequal appreciation of intellectual and manual work, and we try to show how the absence of the technological dimension in science education contributes to a naÂż ve and distorted view of science which deeply affects the necessary scientific and technological literacy of all citizens
- …