18,320 research outputs found

    An HI Imaging Survey of Asymptotic Giant Branch Stars

    Get PDF
    We present an imaging study of a sample of eight asymptotic giant branch (AGB) stars in the HI 21-cm line. Using observations from the Very Large Array, we have unambiguously detected HI emission associated with the extended circumstellar envelopes of six of the targets. The detected HI masses range from M_HI ~ 0.015-0.055 M_sun. The HI morphologies and kinematics are diverse, but in all cases appear to be significantly influenced by the interaction between the circumstellar envelope and the surrounding medium. Four stars (RX Lep, Y UMa, Y CVn, and V1942 Sgr) are surrounded by detached HI shells ranging from 0.36 to 0.76 pc across. We interpret these shells as resulting from material entrained in a stellar outflow being abruptly slowed at a termination shock where it meets the local medium. RX Lep and TX Psc, two stars with moderately high space velocities (V_space>56 km/s), exhibit extended gaseous wakes (~0.3 and 0.6 pc in the plane of the sky), trailing their motion through space. The other detected star, R Peg, displays a peculiar "horseshoe-shaped" HI morphology with emission extended on scales up to ~1.7 pc; in this case, the circumstellar debris may have been distorted by transverse flows in the local interstellar medium. We briefly discuss our new results in the context of the entire sample of evolved stars that has been imaged in HI to date.Comment: Accepted to AJ. A version with full resolution figures is available at http://www.haystack.mit.edu/hay/staff/lmatthew/matthews_HI_survey.pd

    Unveiling Sources of Heating in the Vicinity of the Orion BN/KL Hot Core as Traced by Highly Excited Inversion Transitions of Ammonia

    Full text link
    Using the Expanded Very Large Array, we have mapped the vicinity of the Orion BN/KL Hot Core with sub-arcsecond angular resolution in seven metastable inversion transitions of ammonia: (J,K)=(6,6) to (12,12). This emission comes from levels up to 1500 K above the ground state, enabling identification of source(s) responsible for heating the region. We used this multi-transition dataset to produce images of the rotational/kinetic temperature and the column density of ammonia for ortho and para species separately and on a position-by-position basis. We find rotational temperature and column density in the range 160-490 K and (1-4)x10^17 cm^-2, respectively. Our spatially-resolved images show that the highest (column) density and hottest gas is found in a northeast-southwest elongated ridge to the southeast of Source I. We have also measured the ortho-para ratio of ammonia, estimated to vary in the range 0.9-1.6. Enhancement of ortho with respect to para and the offset of hot ammonia emission peaks from known (proto)stellar sources provide evidence that the ammonia molecules have been released from dust grains into the gas-phase through the passage of shocks and not by stellar radiation. We propose that the combined effect of Source I's proper motion and its low-velocity outflow impinging on a pre-existing dense medium is responsible for the excitation of ammonia and the Orion Hot Core. Finally, we found for the first time evidence of a slow (5 km/s) and compact (1000 AU) outflow towards IRc7.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA. 8 pages, 4 figure

    HI Observations of the Asymptotic Giant Branch Star X Herculis: Discovery of an Extended Circumstellar Wake Superposed on a Compact High-Velocity Cloud

    Full text link
    We report HI 21-cm line observations of the AGB star X Her obtained with the Green Bank Telescope (GBT) and the Very Large Array (VLA). We have detected HI emission totaling M_HI=2.1e-03 M_sun associated with the circumstellar envelope of the star. The HI distribution exhibits a head-tail morphology, similar to those previously observed around Mira and RS Cnc. The tail extends ~6.0' (0.24 pc) in the plane of the sky, along the direction of the star's space motion. We also detect a velocity gradient of ~6.5 km/s across the envelope, consistent with the HI tracing a turbulent wake that arises from the motion of a mass-losing star through the ISM. GBT mapping of a 2x2deg region around X Her reveals that the star lies (in projection) near the periphery of a much larger HI cloud that also exhibits signatures of ISM interaction. The properties of the cloud are consistent with those of compact high-velocity clouds. Using CO observations, we have placed an upper limit on its molecular gas content of N_H2<1.3e20 cm^-2. Although the distance to the cloud is poorly constrained, the probability of a chance coincidence in position, velocity, and apparent position angle of space motion between X Her and the cloud is extremely small, suggesting a possible physical association. However, the large HI mass of the cloud (~>2.4~M_sun) and the blueshift of its mean velocity relative to X Her are inconsistent with an origin tied directly to stellar ejection. (abridged)Comment: Accepted to AJ; 47 pages, 15 figures; version with full resolution figures available at http://www.haystack.mit.edu/hay/staff/lmatthew/matthews_XHer.pd

    Multi-level study of C3H2: The first interstellar hydrocarbon ring

    Get PDF
    Cyclic species in the interstellar medium have been searched for almost since the first detection of interstellar polyatomic molecules. Eleven different C3H2 rotational transitions were detected; 9 of which were studied in TMC-1, a nearby dark dust cloud, are shown. The 1 sub 10 yields 1 sub 01 and 2 sub 20 yields 2 sub 11 transitions were observed with the 43 m NRAO telescope, while the remaining transitions were detected with the 14 m antenna of the Five College Radio Observatory (FCRAO). The lines detected in TMC-1 have energies above the ground state ranging from 0.9 to 17.1 K and consist of both ortho and para species. Limited maps were made along the ridge for several of the transitions. The HC3N J = 2 yields 1 transition were mapped simultaneously with the C3H2 1 sub 10 yields 1 sub 01 line and therefore can compare the distribution of this ring with a carbon chain in TMC-1. C3H2 is distributed along a narrow ridge with a SE - NW extension which is slightly more extended than the HC2N J = 2 yields 1. Gaussian fits gives a FWHP extension of 8'5 for C3H2 while HC3N has a FWHP of 7'. The data show variations of the two velocity components along the ridge as a function of transition. Most of the transitions show a peak at the position of strongest HC3N emission while the 2 sub 21 yields 2 sub 10 transition shows a peak at the NH3 position

    A Documentary of High-Mass Star Formation: Probing the Dynamical Evolution of Orion Source I on 10-100 AU Scales using SiO Masers

    Full text link
    A comprehensive picture of high-mass star formation has remained elusive, in part because examples of high-mass YSOs tend to be relatively distant, deeply embedded, and confused with other emission sources. These factors have impeded dynamical investigations within tens of AU of high-mass YSOs--scales that are critical for probing the interfaces where outflows from accretion disks are launched and collimated. Using observations of SiO masers obtained with the VLA and the VLBA, the KaLYPSO project is overcoming these limitations by mapping the structure and dynamical/temporal evolution of the material 10-1000 AU from the nearest high-mass YSO: Radio Source I in the Orion BN/KL region. Our data include ~40 epochs of VLBA observations over a several-year period, allowing us to track the proper motions of individual SiO maser spots and to monitor changes in the physical conditions of the emitting material with time. Ultimately these data will provide 3-D maps of the outflow structure over approximately 30% of the outflow crossing time. Here we summarize recent results from the KaLYPSO project, including evidence that high-mass star formation is occurring via disk-mediated accretion.Comment: 5 pages; to appear in the proceedings of IAU Symposium 242, Astrophysical Masers and their Environments, ed. J. Chapman & W. Baa

    CO and HI observations of an enigmatic cloud

    Full text link
    An isolated HI cloud with peculiar properties has recently been discovered by Dedes, Dedes, & Kalberla (2008, A&A, 491, L45) with the 300-m Arecibo telescope, and subsequently imaged with the VLA. It has an angular size of ~6', and the HI emission has a narrow line profile of width ~ 3 km/s. We explore the possibility that this cloud could be associated with a circumstellar envelope ejected by an evolved star. Observations were made in the rotational lines of CO with the IRAM-30m telescope, on three positions in the cloud, and a total-power mapping in the HI line was obtained with the Nancay Radio Telescope. CO was not detected and seems too underabundant in this cloud to be a classical late-type star circumstellar envelope. On the other hand, the HI emission is compatible with the detached-shell model that we developed for representing the external environments of AGB stars. We propose that this cloud could be a fossil circumstellar shell left over from a system that is now in a post-planetary-nebula phase. Nevertheless, we cannot rule out that it is a Galactic cloud or a member of the Local Group, although the narrow line profile would be atypical in both cases.Comment: Accepted for publication in Astronomy and Astrophysic

    Circumstellar HI and CO around the carbon stars V1942 Sgr and V CrB

    Full text link
    Context. The majority of stars that leave the main sequence are undergoing extensive mass loss, in particular during the asymptotic giant branch (AGB) phase of evolution. Observations show that the rate at which this phenomenon develops differs highly from source to source, so that the time-integrated mass loss as a function of the initial conditions (mass, metallicity, etc.) and of the stage of evolution is presently not well understood. Aims. We are investigating the mass loss history of AGB stars by observing the molecular and atomic emissions of their circumstellar envelopes. Methods. In this work we have selected two stars that are on the thermally pulsing phase of the AGB (TP-AGB) and for which high quality data in the CO rotation lines and in the atomic hydrogen line at 21 cm could be obained. Results. V1942 Sgr, a carbon star of the Irregular variability type, shows a complex CO line profile that may originate from a long-lived wind at a rate of ~ 10^-7 Msol/yr, and from a young (< 10^4 years) fast outflow at a rate of ~ 5 10^-7 Msol/yr. Intense HI emission indicates a detached shell with 0.044 Msol of hydrogen. This shell probably results from the slowing-down, by surrounding matter, of the same long-lived wind observed in CO that has been active during ~ 6 10^5 years. On the other hand, the carbon Mira V CrB is presently undergoing mass loss at a rate of 2 10^-7 Msol/yr, but was not detected in HI. The wind is mostly molecular, and was active for at most 3 10^4 years, with an integrated mass loss of at most 6.5 10^-3 Msol. Conclusions. Although both sources are carbon stars on the TP-AGB, they appear to develop mass loss under very different conditions, and a high rate of mass loss may not imply a high integrated mass loss.Comment: Accepted for publication in Astron. Astrophy
    corecore