527 research outputs found

    The Xp10 bacteriophage protein P7 inhibits transcription by the major and major variant forms of the host RNA polymerase via a common mechanism

    Get PDF
    The σ factor is a functionally obligatory subunit of the bacterial transcription machinery, the RNA polymerase. Bacteriophage-encoded small proteins that either modulate or inhibit the bacterial RNAP to allow the temporal regulation of bacteriophage gene expression often target the activity of the major bacterial σ factor, σ70. Previously, we showed that during Xanthomonas oryzae phage Xp10 infection, the phage protein P7 inhibits the host RNAP by preventing the productive engagement with the promoter and simultaneously displaces the σ70 factor from the RNAP. In this study, we demonstrate that P7 also inhibits the productive engagement of the bacterial RNAP containing the major variant bacterial σ factor, σ54, with its cognate promoter. The results suggest for the first time that the major variant form of the host RNAP can also be targeted by bacteriophage-encoded transcription regulatory proteins. Since the major and major variant σ factor interacting surfaces in the RNAP substantially overlap, but different regions of σ70 and σ54 are used for binding to the RNAP, our results further underscore the importance of the σ–RNAP interface in bacterial RNAP function and regulation and potentially for intervention by antibacterials

    The geomorphological distribution of subaqueous tufa columns within a hypersaline lake : Mono Lake, USA

    Get PDF
    Acknowledgments This work was supported by funding from BP Group. We thank the Mono Lake Committee for supporting fieldwork and for helping our vessel onto and most of all off the lake, and the State of California for permitting access to the lake and its environs. Dave Marquart is thanked for his support and knowledge of the lake environment. Cody and Phillip are thanked for their help on the lake, and Vern for vital logistical support. Ian Billing is thanked for his instrumental involvement in this project, and his role in shaping our thoughts. We hope he would be pleased with this paper. Dr. Chelsea Pederson, Dr. W. Fischer are heartily thanked for their excellent efforts as reviewers improving this manuscript, and Dr. Juan Carlos Laya is thanked for his careful handling of the manuscript as Associate Editor.Peer reviewedPostprin

    Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing

    Get PDF
    Artificial intelligence (AI) embedded within digital models of manufacturing processes can be used to improve process productivity and product quality significantly. The application of such advanced capabilities particularly to highly digitalized processes such as metal additive manufacturing (AM) is likely to make those processes commercially more attractive. AI capabilities will reside within Digital Twins (DTs) which are living virtual replicas of the physical processes. DTs will be empowered to operate autonomously in a diagnostic control capacity to supervise processes and can be interrogated by the practitioner to inform the optimal processing route for any given product. The utility of the information gained from the DTs would depend on the quality of the digital models and, more importantly, their faster-solving surrogates which dwell within DTs for consultation during rapid decision-making. In this article, we point out the exceptional value of DTs in AM and focus on the need to create high-fidelity multiscale-multiphysics models for AM processes to feed the AI capabilities. We identify technical hurdles for their development, including those arising from the multiscale and multiphysics characteristics of the models, the difficulties in linking models of the subprocesses across scales and physics, and the scarcity of experimental data. We discuss the need for creating surrogate models using machine learning approaches for real-time problem-solving. We further identify non-technical barriers, such as the need for standardization and difficulties in collaborating across different types of institutions. We offer potential solutions for all these challenges, after reflecting on and researching discussions held at an international symposium on the subject in 2019. We argue that a collaborative approach can not only help accelerate their development compared with disparate efforts, but also enhance the quality of the models by allowing modular development and linkages that account for interactions between the various sub-processes in AM. A high-level roadmap is suggested for starting such a collaboration.The main sponsor of the Symposium was the CSIRO Research Office. Co-sponsors were The University of Melbourne, RMIT University, and the software companies associated with ThingWorx, Solvia, MSC Simufact, Materialise and Flow-3D

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate

    Full text link
    We report on the experimental observation of vortex formation and production of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an external oscillatory perturbation. The oscillatory perturbations start by exciting quadrupolar and scissors modes of the condensate. Then regular vortices are observed finally evolving to a vortex tangle configuration. The vortex tangle is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion.Comment: to appear in JLTP - QFS 200

    Kindlin-1 regulates epidermal growth factor receptor signalling

    Get PDF
    Kindler syndrome (KS) is an autosomal recessive genodermatosis that results from mutations in the FERMT1 gene encoding kindlin-1. Kindlin-1 localises to focal adhesion and is known to contribute to the activation of integrin receptors. Most cases of KS show a reduction or complete absence of kindlin-1 in keratinocytes, resulting in defective integrin activation, cell adhesion and migration. However, roles for kindlin-1 beyond integrin activation remain poorly defined. In the current study we show that skin and keratinocytes from KS patients have significantly reduced expression levels of the epidermal growth factor receptor (EGFR), resulting in defective EGF-dependent signalling and cell migration. Mechanistically, we demonstrate that kindlin-1 can associate directly with EGFR in vitro and in keratinocytes in an EGF-dependent, integrin-independent manner and that formation of this complex is required for EGF-dependent migration. We further demonstrate that kindlin-1 acts to protect EGFR from lysosomal-mediated degradation. This reveals a new role for kindlin-1 that has implications for understanding KS disease pathology

    Temperature dependence of the breakdown of the quantum Hall effect studied by induced currents

    Get PDF
    Copyright © 2004 The American Physical SocietyWe have developed a model of the high-current breakdown of the integer quantum Hall effect, as measured in contactless experiments using a highly-sensitive torsion balance magnetometer. The model predicts that, for empirically “low-mobility” samples (μ<75 m2 V−1 s−1), the critical current for breakdown should decrease with, and have a linear dependence on, temperature. This prediction is verified experimentally with the addition of a low-temperature saturation of the critical current at a temperature that depends on both sample number density and filling factor. It is shown that this saturation is consistent with quasielastic inter-Landau-level scattering when the maximum electric field in the sample reaches a large enough value. In addition we show how this model can be extended to give qualitative agreement with experiments on high-mobility samples

    Vortices and dynamics in trapped Bose-Einstein condensates

    Full text link
    I review the basic physics of ultracold dilute trapped atomic gases, with emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation) illuminates the role of the density and the quantum-mechanical phase. One unique feature of these experimental systems is the opportunity to study the dynamics of vortices in real time, in contrast to typical experiments on superfluid 4^4He. I discuss three specific examples (precession of single vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex array). Other unusual features include the study of quantum turbulence and the behavior for rapid rotation, when the vortices form dense regular arrays. Ultimately, the system is predicted to make a quantum phase transition to various highly correlated many-body states (analogous to bosonic quantum Hall states) that are not superfluid and do not have condensate wave functions. At present, this transition remains elusive. Conceivably, laser-induced synthetic vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics, conference proceedings: Symposia on Superfluids under Rotation (Lammi, Finland, April 2010
    corecore