16 research outputs found

    Coupled environmental and demographic fluctuations shape the evolution of cooperative antimicrobial resistance

    Get PDF
    There is a pressing need to better understand how microbial populations respond to antimicrobial drugs, and to find mechanisms to possibly eradicate antimicrobial-resistant cells. The inactivation of antimicrobials by resistant microbes can often be viewed as a cooperative behavior leading to the coexistence of resistant and sensitive cells in large populations and static environments. This picture is however greatly altered by the fluctuations arising in volatile environments, in which microbial communities commonly evolve. Here, we study the eco-evolutionary dynamics of a population consisting of an antimicrobial resistant strain and microbes sensitive to antimicrobial drugs in a time-fluctuating environment, modeled by a carrying capacity randomly switching between states of abundance and scarcity. We assume that antimicrobial resistance is a shared public good when the number of resistant cells exceeds a certain threshold. Eco-evolutionary dynamics is thus characterized by demographic noise (birth and death events) coupled to environmental fluctuations which can cause population bottlenecks. By combining analytical and computational means, we determine the environmental conditions for the long-lived coexistence and fixation of both strains, and characterize a fluctuation-driven antimicrobial resistance eradication mechanism, where resistant microbes experience bottlenecks leading to extinction. We also discuss the possible applications of our findings to laboratory-controlled experiments.Comment: 19+7 pages, 4+1 figures. Simulation data and codes for all figures are electronically available from the University of Leeds Data Repository. DOI: https://doi.org/10.5518/136

    Coexistence of Competing Microbial Strains under Twofold Environmental Variability and Demographic Fluctuations

    Full text link
    Microbial populations generally evolve in volatile environments, under conditions fluctuating between harsh and mild, e.g. as the result of sudden changes in toxin concentration or nutrient abundance. Environmental variability thus shapes the population long-time dynamics, notably by influencing the ability of different strains of microorganisms to coexist. Inspired by the evolution of antimicrobial resistance, we study the dynamics of a community consisting of two competing strains subject to twofold environmental variability. The level of toxin varies in time, favouring the growth of one strain under low levels and the other strain when the toxin level is high. We also model time-changing resource abundance by a randomly switching carrying capacity that drives the fluctuating size of the community. While one strain dominates in a static environment, we show that species coexistence is possible in the presence of environmental variability. By computational and analytical means, we determine the environmental conditions under which long-lived coexistence is possible and when it is almost certain. We also determine how the make-up of the coexistence phase and the average abundance of each strain depend on the environmental variability

    A Model for the Origin and Properties of Flicker-Induced Geometric Phosphenes

    Get PDF
    We present a model for flicker phosphenes, the spontaneous appearance of geometric patterns in the visual field when a subject is exposed to diffuse flickering light. We suggest that the phenomenon results from interaction of cortical lateral inhibition with resonant periodic stimuli. We find that the best temporal frequency for eliciting phosphenes is a multiple of intrinsic (damped) oscillatory rhythms in the cortex. We show how both the quantitative and qualitative aspects of the patterns change with frequency of stimulation and provide an explanation for these differences. We use Floquet theory combined with the theory of pattern formation to derive the parameter regimes where the phosphenes occur. We use symmetric bifurcation theory to show why low frequency flicker should produce hexagonal patterns while high frequency produces pinwheels, targets, and spirals

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    Carbon-bridged diphosphine ligands for chromium-catalysed ethylene tetramerisation and trimerisation reactions

    No full text
    The use of carbon-bridged diphosphine ligands in chromium-catalysed ethylene tri- and tetramerisation reactions has been investigated. Two- and three-carbon spacer ligands all showed activity for selective oligomerisation, with a structure-selectivity correlation between P-Cr-P bite angle and 1-octene: 1-hexene ratio evident. Activated chromium complexes of single carbon spacer diphosphines were also shown to be effective tetramerisation catalysts, provided that the ligand is innocent under the conditions of catalyst activation. A catalyst with the bis(diphenylphosphino)benzene ligand was found to be exceptionally active, although the combined 1-hexene and 1-octene selectivity was lower than with the best diphosphinoamine (PNP) ligands. The yield losses to by-products can to an extent be minimised by the use of high reaction temperatures and pressures. Unlike with the PNP-based systems, attempts to activate the Cr/bis(diphenylphosphino)benzene catalyst in situ from a chromium salt and free ligand resulted in low activity and high polymer formation. The effect of different phosphine substitution on catalyst selectivity was explored. Steric constraints around the catalytic centre (ortho-alkylphenyl phosphines) resulted in a shift towards 1-hexene formation, as with PNP catalysts. Additionally, the basicity of the phosphines appears to influence catalyst selectivity, with alkyl phosphines favouring trimerisation. An interplay between phosphine basicity and bridge structure is in evidence, however, as a catalyst containing a ligand with both basic phosphine atoms and a small bite angle was shown to be selective towards I-octene. (c) 2007 Elsevier B.V. All rights reserved.</p
    corecore