387 research outputs found

    Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent.

    Get PDF
    NOD-like receptors (NLRs) are a group of cytoplasmic molecules that recognize microbial invasion or 'danger signals'. Activation of NLRs can induce rapid caspase-1 dependent cell death termed pyroptosis, or a caspase-1 independent cell death termed pyronecrosis. Bacillus anthracis lethal toxin (LT), is recognized by a subset of alleles of the NLR protein Nlrp1b, resulting in pyroptotic cell death of macrophages and dendritic cells. Here we show that LT induces lysosomal membrane permeabilization (LMP). The presentation of LMP requires expression of an LT-responsive allele of Nlrp1b, and is blocked by proteasome inhibitors and heat shock, both of which prevent LT-mediated pyroptosis. Further the lysosomal protease cathepsin B is released into the cell cytosol and cathepsin inhibitors block LT-mediated cell death. These data reveal a role for lysosomal membrane permeabilization in the cellular response to bacterial pathogens and demonstrate a shared requirement for cytosolic relocalization of cathepsins in pyroptosis and pyronecrosis

    Increased Recombination Between Active tRNA Genes

    Full text link
    Transfer RNA genes are distributed throughout eukaryotic genomes, and are frequently found as multicopy families. In Saccharomyces cerevisiae, tRNA gene transcription by RNA polymerase III suppresses nearby transcription by RNA polymerase II, partially because the tRNA genes are clustered near the nucleolus. We have tested whether active transcription of tRNA genes might also suppress recombination, since recombination between identical copies of the repetitive tRNA genes could delete intervening genes and be detrimental to survival. The opposite proved to be the case. Recombination between active tRNA genes was elevated, but only when both genes are transcribed. We also tested the effects of tRNA genes on recombination between the direct terminal repeats of a neighboring retrotransposon, since most Ty retrotransposons reside next to tRNA genes, and the selective advantage of this arrangement is not known.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63113/1/dna.2006.25.359.pd

    Optimization of chemoenzymatic mass-tagging by strain-promoted cycloaddition (SPAAC) for the determination of O-GlcNAc stoichiometry by Western blotting

    Get PDF
    The dynamic modification of intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAcylation) plays critical roles in many cellular processes. Although various methods have been developed for O-GlcNAc detection, there are few techniques for monitoring glycosylation stoichiometry and state (i.e., mono-, di-, etc., O-GlcNAcylated). Measuring the levels of O-GlcNAcylation on a given substrate protein is important for understanding the biology of this critical modification and for prioritizing substrates for functional studies. One powerful solution to this limitation involves the chemoenzymatic installation of polyethylene glycol polymers of defined molecular mass onto O-GlcNAcylated proteins. These “mass tags” produce shifts in protein migration during sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) that can be detected by Western blotting. Broad adoption of this method by the scientific community has been limited, however, by a lack of commercially available reagents and well-defined protein standards. Here, we develop a “click chemistry” approach to this method using entirely commercial reagents and confirm the accuracy of the approach using a semisynthetic O-GlcNAcylated protein. Our studies establish a new, expedited experimental workflow and standardized methods that can be readily utilized by non-experts to quantify the O-GlcNAc stoichiometry and state on endogenous proteins in any cell or tissue lysate

    Control via electron count of the competition between magnetism and superconductivity in cobalt and nickel doped NaFeAs

    Full text link
    Using a combination of neutron, muon and synchrotron techniques we show how the magnetic state in NaFeAs can be tuned into superconductivity by replacing Fe by either Co or Ni. Electron count is the dominant factor, since Ni-doping has double the effect of Co-doping for the same doping level. We follow the structural, magnetic and superconducting properties as a function of doping to show how the superconducting state evolves, concluding that the addition of 0.1 electrons per Fe atom is sufficient to traverse the superconducting domain, and that magnetic order coexists with superconductivity at doping levels less than 0.025 electrons per Fe atom.Comment: 4 pages, 6 figure

    Electrochemical Dimerization of Phenylpropenoids and the Surprising Antioxidant Activity of the Resultant Quinone Methide Dimers

    Full text link
    A simple method for the dimerization of phenylpropenoid derivatives is reported. It leverages electrochemical oxidation of pâ unsaturated phenols to access the dimeric materials in a biomimetic fashion. The mild nature of the transformation provides excellent functional group tolerance, resulting in a unified approach for the synthesis of a range of natural products and related analogues with excellent regiocontrol. The operational simplicity of the method allows for greater efficiency in the synthesis of complex natural products. Interestingly, the quinone methide dimer intermediates are potent radicalâ trapping antioxidants; more so than the phenols from which they are derivedâ or transformed toâ despite the fact that they do not possess a labile Hâ atom for transfer to the peroxyl radicals that propagate autoxidation.Chinonmethidâ Dimere wurden durch milde anodische Oxidation vermittelt durch eine preiswerte und leicht verfügbare Aminbase mit exzellenter Ausbeute und Regiokontrolle hergestellt. Diese Strategie ermöglicht raschen Zugang zu Zwischenprodukten für die katalytische Synthese von Phenylpropenoidâ Oligomeren und bietet ein neues Werkzeug für die Totalsynthese dieser komplexen Moleküle.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146959/1/ange201810870.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146959/2/ange201810870_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146959/3/ange201810870-sup-0001-misc_information.pd

    Electrochemical Dimerization of Phenylpropenoids and the Surprising Antioxidant Activity of the Resultant Quinone Methide Dimers

    Full text link
    A simple method for the dimerization of phenylpropenoid derivatives is reported. It leverages electrochemical oxidation of pâ unsaturated phenols to access the dimeric materials in a biomimetic fashion. The mild nature of the transformation provides excellent functional group tolerance, resulting in a unified approach for the synthesis of a range of natural products and related analogues with excellent regiocontrol. The operational simplicity of the method allows for greater efficiency in the synthesis of complex natural products. Interestingly, the quinone methide dimer intermediates are potent radicalâ trapping antioxidants; more so than the phenols from which they are derivedâ or transformed toâ despite the fact that they do not possess a labile Hâ atom for transfer to the peroxyl radicals that propagate autoxidation.Quinone methide dimers are prepared via mild anodic oxidation mediated by a cheap and readily available amine base with excellent yield and regiocontrol. This strategy provides rapid access to intermediates for the synthesis of phenylpropenoid oligomers in a catalytic fashion, providing a new tool for the total synthesis of these complex molecules.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147117/1/anie201810870-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147117/2/anie201810870_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147117/3/anie201810870.pd

    Optimization of chemoenzymatic mass-tagging by strain-promoted cycloaddition (SPAAC) for the determination of O-GlcNAc stoichiometry by Western blotting

    Get PDF
    The dynamic modification of intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAcylation) plays critical roles in many cellular processes. Although various methods have been developed for O-GlcNAc detection, there are few techniques for monitoring glycosylation stoichiometry and state (i.e., mono-, di-, etc., O-GlcNAcylated). Measuring the levels of O-GlcNAcylation on a given substrate protein is important for understanding the biology of this critical modification and for prioritizing substrates for functional studies. One powerful solution to this limitation involves the chemoenzymatic installation of polyethylene glycol polymers of defined molecular mass onto O-GlcNAcylated proteins. These “mass tags” produce shifts in protein migration during sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) that can be detected by Western blotting. Broad adoption of this method by the scientific community has been limited, however, by a lack of commercially available reagents and well-defined protein standards. Here, we develop a “click chemistry” approach to this method using entirely commercial reagents and confirm the accuracy of the approach using a semisynthetic O-GlcNAcylated protein. Our studies establish a new, expedited experimental workflow and standardized methods that can be readily utilized by non-experts to quantify the O-GlcNAc stoichiometry and state on endogenous proteins in any cell or tissue lysate
    corecore