1,493 research outputs found
Fast Augmenting Paths by Random Sampling from Residual Graphs
Consider an n-vertex, m-edge, undirected graph with integral capacities and max-flow value v. We give a new [~ over O](m + nv)-time maximum flow algorithm. After assigning certain special sampling probabilities to edges in [~ over O](m)$ time, our algorithm is very simple: repeatedly find an augmenting path in a random sample of edges from the residual graph. Breaking from past work, we demonstrate that we can benefit by random sampling from directed (residual) graphs. We also slightly improve an algorithm for approximating flows of arbitrary value, finding a flow of value (1 - ε) times the maximum in [~ over O](m√n/ε) time.National Science Foundation (U.S.
Elements of attention in HIV-infected adults: Evaluation of an existing model
Because of the multifactorial nature of neuropsychological tests, attention remains poorly defined from a neuropsychological perspective, and conclusions made regarding attention across studies may be limited due to the different nature of the measures used. Thus, a more definitive schema for this neurocognitive domain is needed. We assessed the applicability of Mirsky and Duncan\u27s (2001) neuropsychological model of attention to a cohort of 104 HIV+ adults. Our analysis resulted in a five-factor structure similar to that of previous studies, which explained 74.5% of the variance. However, based on the psychometric characteristics of the measures comprising each factor, we offer an alternative interpretation of the factors. Findings also indicate that one factor, which is generally not assessed in clinical neuropsychology settings, may be more predictive of real-world behaviors (such as medication adherence) than those composed of traditional measures. Suggestions for further research in this important area are discussed
Defining the Dose of Altitude Training: How High to Live for Optimal Sea Level Performance Enhancement
Defining the dose of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol 116: 595-603, 2014. First published October 24, 2013; doi:10.1152/japplphysiol.00634.2013.-Chronic living at altitudes of 2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hematological acclimatization, compared with athletes living at lower altitudes. After 4 wk of group sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m). All athletes trained together daily at a common altitude from 1,250-3,000 m following a modified live high-train low model. Subjects completed hematological, metabolic, and performance measures at sea level, before and after altitude training; EPO was assessed at various time points while at altitude. On return from altitude, 3,000-m time trial performance was significantly improved in groups living at the middle two altitudes (2,085 and 2,454 m), but not in groups living at 1,780 and 2,800 m. EPO was significantly higher in all groups at 24 and 48 h, but returned to sea level baseline after 72 h in the 1,780-m group. Erythrocyte volume was significantly higher within all groups after return from altitude and was not different between groups. These data suggest that, when completing a 4-wk altitude camp following the live high-train low model, there is a target altitude between 2,000 and 2,500 m that produces an optimal acclimatization response for sea level performance
Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function
<p>Abstract</p> <p>Background</p> <p>The response of mammalian glial cells to chronic degeneration and trauma is hypothesized to be incompatible with support of neuronal function in the central nervous system (CNS) and retina. To test this hypothesis, we developed an inducible model of proliferative reactive gliosis in the absence of degenerative stimuli by genetically inactivating the cyclin-dependent kinase inhibitor <it>p27<sup>Kip1 </sup></it>(<it>p27 </it>or <it>Cdkn1b</it>) in the adult mouse and determined the outcome on retinal structure and function.</p> <p>Results</p> <p>p27-deficient Müller glia reentered the cell cycle, underwent aberrant migration, and enhanced their expression of intermediate filament proteins, all of which are characteristics of Müller glia in a reactive state. Surprisingly, neuroglial interactions, retinal electrophysiology, and visual acuity were normal.</p> <p>Conclusion</p> <p>The benign outcome of proliferative reactive Müller gliosis suggests that reactive glia display context-dependent, graded and dynamic phenotypes and that reactivity in itself is not necessarily detrimental to neuronal function.</p
Automated Grain Boundary Detection for Bright-Field Transmission Electron Microscopy Images via U-Net
Quantification of microstructures is crucial for understanding
processing-structure and structure-property relationships in polycrystalline
materials. Delineating grain boundaries in bright-field transmission electron
micrographs, however, is challenging due to complex diffraction contrast in
images. Conventional edge detection algorithms are inadequate; instead, manual
tracing is usually required. This study demonstrates the first successful
machine-learning approach for grain-boundary detection in bright-field
transmission electron micrographs. The proposed methodology uses a U-Net
convolutional neural network trained on carefully constructed data from
bright-field images and hand-tracings available from prior studies, combined
with targeted post-processing algorithms to preserve fine features of interest.
The image processing pipeline accurately estimates grain-boundary positions,
avoiding segmentation in regions with intragrain contrast and identifying
low-contrast boundaries. Our approach is validated by directly comparing
microstructural markers (i.e., grain centroids) identified in U-Net predictions
with those identified in hand tracings; furthermore, the grain size
distributions obtained from the two techniques show notable overlap when
compared using t-, Kolmogorov-Smirnov, and Cramer-von Mises tests. The
technique is then successfully applied to interpret new aluminum film
microstructures having different image characteristics from the training data,
and preliminary results from Pt and Pd microstructures are presented,
highlighting the versatility of our approach for grain-boundary identification
in bright-field micrographs
Can We Calculate Mean Arterial Pressure in Humans?
Mean arterial pressure (MAP) is either measured with an oscillometric cuff and then systolic (SBP) and diastolic (DBP) blood pressures are estimated from an unknown algorithm; or SBP and DBP are measured via auscultation and MAP calculated using measures of systolic pressure (SBP), diastolic pressure (DBP), and a form-factor (FF; equation: [(SBP-DBP)*FF]+DBP). The typical FF used is 0.33 though others (0.4) have been proposed. Recent work indicates that estimation of aortic MAP via a FF leads to inaccurate values and should therefore be interpreted with caution, whether this is the case for local MAP is unknown. While the implications for hypertension (HTN) diagnosis are minimal, the calculation of local MAP is essential to the study of blood pressure regulation and exercise hemodynamics in patient populations (e.g. heart failure). PURPOSE: To compare the calculation of local MAP using catheter waveforms and a FF, against MAP derived from the pressure-time integral (PTI; i.e. average pressure across the cardiac cycle) measured via radial arterial catheterization. METHODS: We analyzed radial arterial catheter waveforms from 39 patients (Age: 71±7 years; BMI: 38.4±6.7; Female: 66%; HTN prevalence: 97%) with heart failure with preserved ejection fraction (HFpEF) at rest and during cycling exercise at 20 Watts. We compared the PTI (from the catheter waveform) with the calculation of MAP from the peak and nadir of the same waveforms (5-beat averages) using the 0.33 and 0.4 FF’s in the FF equation. RESULTS: Compared to the PTI (91±13 mmHg), resting MAP was not significantly different when calculated using the 0.33 FF (91±11 mmHg, P\u3e0.999) but was higher when using the 0.4 FF (96±12 mmHg, PCONCLUSION:While the 0.33 FF provides an accurate assessment of MAP on average during rest and exercise in the radial artery in patients with HFpEF, the limits of agreement are large reflecting a lack of precision in measurement at an individual level. Indirect calculations of MAP via a FF may lead to inaccurate conclusions regarding the mechanisms of blood pressure regulation both at rest and during exercise testing in this population
African swine fever : an Update
PòsterFebre
Overview of the Role for Calreticulin in the Enhancement of Wound Healing through Multiple Biological Effects
Calreticulin (CRT), an intracellular chaperone protein crucial for the proper folding and transport of proteins through the endoplasmic reticulum, has more recent acclaim as a critical regulator of extracellular functions, particularly in mediating cellular migration and as a requirement for phagocytosis of apoptotic cells. Consistent with these functions, we show that the topical application of CRT has profound effects on the process of wound healing by causing a dose-dependent increase in epithelial migration and granulation tissue formation in both murine and porcine normal and impaired animal models of skin injury. These effects of CRT are substantiated, in vitro, as we show that CRT strongly induces cell migration/wound closure of human keratinocytes and fibroblasts, using a wound/scratch plate assay, and stimulates cellular proliferation of human keratinocytes, fibroblasts, and vascular endothelial cells, providing mechanistic insight into how CRT functions in repair. Similarly, in both animal models, the histology of the wounds show marked proliferation of basal keratinocytes and dermal fibroblasts, dense cellularity of the dermis with notably increased numbers of macrophages and well-organized collagen fibril deposition. Thus, CRT profoundly affects the wound healing process by recruiting cells essential for repair into the wound, stimulating cell growth, and increasing extracellular matrix production
- …