80 research outputs found

    Toward a Centralized Hatch-Waxman Venue

    Get PDF
    Pharmaceutical litigation often begins when a generic drug company files an application to have its generic drug approved by the FDA. That application is received by the FDA in the District of Maryland. To “submit” it is a statutory act of patent infringement under the Hatch-Waxman Act. Establishing venue in subsequent Hatch-Waxman litigation can be complex because HatchWaxman litigation often involves simultaneous and independent lawsuits against many generic applicants. A Hatch-Waxman plaintiff might reasonably attempt to consolidate litigation in a single district court; Hatch-Waxman defendants might reasonably resist consolidation in the plaintiff’s preferred venue. Recent Supreme Court and Federal Circuit case law has narrowed venue options for Hatch-Waxman plaintiffs. This Comment argues for an interpretation of Hatch-Waxman’s statutory act of patent infringement and the patent venue rules that moves toward a centralized venue for Hatch-Waxman litigation in the District of Maryland

    The Use and Efficacy of Comics in Healthcare: A Scoping Review in Graphic Medicine

    Get PDF
    Background: Graphic medicine is defined as the “interaction between the medium of comics and the discourse of healthcare”. We seek to understand the ways in which comics are currently being employed in healthcare settings and what effects, if any, these practices have on physician, patient, and their experiences and health outcomes. Methods: Our scoping review is following the six-stage methodology laid out by Arksey and O’Malley (2005) in order to map the field – an appropriate methodology, as graphic medicine is a relatively new field that thus far lacks clear boundaries. We built, tested, and conducted searches in six databases: (1) PubMed, (2) CINAHL, (3) SCOPUS, (4) ERIC, (5) Web of Science (Core), and (6) Google Scholar. Preliminary Findings: Search results netted 5,097 unique citations, which highlights a clear problem with current indexing of comics in medical databases, as at least 80% of the citations were in fact NOT comics at all. In-depth screening and analysis of relevant results is ongoing. Potential Impact: Graphic medicine shows potential as a tool in medical and patient education and may help bridge the health literacy gap. Next Steps: Our next steps include synthesis of relevant studies and ongoing hand-searching for results outside of typical scholarly publications. Questions for the MTL Community: How might you make use of comics in your practice and/or praxis

    Pairing dynamics and solitonic excitations in collisions of medium-mass, identical nuclei

    Full text link
    We present results of collisions of 90^{90}Zr+90^{90}Zr and 96^{96}Zr+96^{96}Zr obtained within time-dependent density functional theory (TDDFT) extended to superfluid systems, known as time-dependent superfluid local density approximation (TDSLDA). We discuss qualitatively new features occurring in collisions of two superfluid nuclei at energies in the vicinity of the Coulomb barrier. We show that a \textit{solitonic excitation} -- an abrupt pairing phase distortion -- reported previously [P.~Magierski et al., Phys. Rev. Lett. \textbf{119}, 042501 (2017)], increases the barrier for capture generating effective repulsion between colliding nuclei. Moreover we demonstrate that pairing field leads to qualitatively different dynamics at the Coulomb barrier which manifests itself in a slower evolution of deformation towards a compact shape. Last but not least, we show that magnitude of pairing correlations can be dynamically enhanced after collision. We interpret it as a dynamically induced U(1)U(1) symmetry breaking, which leads to large-amplitude oscillations of pairing field and bear similarity to the pairing Higgs mechanism.Comment: 13 pages (including supplemental material), 6 figure

    Cafeteria diet-induced obesity causes oxidative damage in white adipose

    Get PDF
    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods – the “cafeteria” diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet–fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes

    Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148

    Get PDF
    Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these, rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional gene silencing of this regulatory element repressed TERT expression in an allele-specific manner. Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in reduced TERT expression, telomerase activity and telomere length. Our results indicate that the association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele

    SigFuge: Single gene clustering of RNA-seq reveals differential isoform usage among cancer samples

    Get PDF
    High-throughput sequencing technologies, including RNA-seq, have made it possible to move beyond gene expression analysis to study transcriptional events including alternative splicing and gene fusions. Furthermore, recent studies in cancer have suggested the importance of identifying transcriptionally altered loci as biomarkers for improved prognosis and therapy. While many statistical methods have been proposed for identifying novel transcriptional events with RNA-seq, nearly all rely on contrasting known classes of samples, such as tumor and normal. Few tools exist for the unsupervised discovery of such events without class labels. In this paper, we present SigFuge for identifying genomic loci exhibiting differential transcription patterns across many RNA-seq samples. SigFuge combines clustering with hypothesis testing to identify genes exhibiting alternative splicing, or differences in isoform expression. We apply SigFuge to RNA-seq cohorts of 177 lung and 279 head and neck squamous cell carcinoma samples from the Cancer Genome Atlas, and identify several cases of differential isoform usage including CDKN2A, a tumor suppressor gene known to be inactivated in a majority of lung squamous cell tumors. By not restricting attention to known sample stratifications, SigFuge offers a novel approach to unsupervised screening of genetic loci across RNA-seq cohorts. SigFuge is available as an R package through Bioconductor

    ProxiMAX randomisation:a new technology for non-degenerate saturation mutagenesis of contiguous codons

    Get PDF
    Back in 2003, we published ‘MAX’ randomisation, a process of non-degenerate saturation mutagenesis using exactly 20 codons (one for each amino acid) or else any required subset of those 20 codons. ‘MAX’ randomisation saturates codons located in isolated positions within a protein, as might be required in enzyme engineering, or else on one face of an alpha-helix, as in zinc finger engineering. Since that time, we have been asked for an equivalent process that can saturate multiple, contiguous codons in a non-degenerate manner. We have now developed ‘ProxiMAX’ randomisation, which does just that: generating DNA cassettes for saturation mutagenesis without degeneracy or bias. Offering an alternative to trinucleotide phosphoramidite chemistry, ProxiMAX randomisation uses nothing more sophisticated than unmodified oligonucleotides and standard molecular biology reagents. Thus it requires no specialised chemistry, reagents nor equipment and simply relies on a process of saturation cycling comprising ligation, amplification and digestion for each cycle. The process can encode both unbiased representation of selected amino acids or else encode them in pre-defined ratios. Each saturated position can be defined independently of the others. We demonstrate accurate saturation of up to 11 contiguous codons. As such, ProxiMAX randomisation is particularly relevant to antibody engineering

    TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A

    Get PDF
    Transcription-blocking DNA lesions are removed by transcription-coupled nucleotide excision repair (TC-NER) to preserve cell viability. TC-NER is triggered by the stalling of RNA polymerase II at DNA lesions, leading to the recruitment of TC-NER-specific factors such as the CSA-DDB1-CUL4A-RBX1 cullin-RING ubiquitin ligase complex (CRLCSA). Despite its vital role in TC-NER, little is known about the regulation of the CRLCSA complex during TC-NER. Using conventional and cross-linking immunoprecipitations coupled to mass spectrometry, we uncover a stable interaction between CSA and the TRiC chaperonin. TRiC's binding to CSA ensures its stability and DDB1-dependent assembly into the CRLCSA complex. Consequently, loss of TRiC leads to mislocalization and depletion of CSA, as well as impaired transcription recovery following UV damage, suggesting defects in TC-NER. Furthermore, Cockayne syndrome (CS)-causing mutations in CSA lead to increased TRiC binding and a failure to compose the CRLCSA complex. Thus, we uncover CSA as a TRiC substrate and reveal that TRiC regulates CSA-dependent TC-NER and the development of CS

    Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation

    Get PDF
    OBJECTIVE: A novel approach to regulate obesity-associated adipose inflammation may be through metabolic reprogramming of macrophages (MΦs). Broadly speaking, MΦs dependent on glucose are pro-inflammatory, classically activated MΦs (CAM), which contribute to adipose inflammation and insulin resistance. In contrast, MΦs that primarily metabolize fatty acids are alternatively activated MΦs (AAM) and maintain tissue insulin sensitivity. In actuality, there is much flexibility and overlap in the CAM-AAM spectrum in vivo dependent upon various stimuli in the microenvironment. We hypothesized that specific lipid trafficking proteins, e.g. fatty acid transport protein 1 (FATP1), would direct MΦ fatty acid transport and metabolism to limit inflammation and contribute to the maintenance of adipose tissue homeostasis. METHODS: Bone marrow derived MΦs (BMDMs) from Fatp1 (-/-) and Fatp1 (+/+) mice were used to investigate FATP1-dependent substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. We also generated C57BL/6J chimeric mice by bone marrow transplant specifically lacking hematopoetic FATP1 (Fatp1 (B-/-)) and controls Fatp1 (B+/+). Mice were challenged by high fat diet (HFD) or low fat diet (LFD) and analyses including MRI, glucose and insulin tolerance tests, flow cytometric, histologic, and protein quantification assays were conducted. Finally, an FATP1-overexpressing RAW 264.7 MΦ cell line (FATP1-OE) and empty vector control (FATP1-EV) were developed as a gain of function model to test effects on substrate metabolism, bioenergetics, metabolomics, and inflammatory responses. RESULTS: Fatp1 is downregulated with pro-inflammatory stimulation of MΦs. Fatp1 (-/-) BMDMs and FATP1-OE RAW 264.7 MΦs demonstrated that FATP1 reciprocally controled metabolic flexibility, i.e. lipid and glucose metabolism, which was associated with inflammatory response. Supporting our previous work demonstrating the positive relationship between glucose metabolism and inflammation, loss of FATP1 enhanced glucose metabolism and exaggerated the pro-inflammatory CAM phenotype. Fatp1 (B-/-) chimeras fed a HFD gained more epididymal white adipose mass, which was inflamed and oxidatively stressed, compared to HFD-fed Fatp1 (B+/+) controls. Adipose tissue macrophages displayed a CAM-like phenotype in the absence of Fatp1. Conversely, functional overexpression of FATP1 decreased many aspects of glucose metabolism and diminished CAM-stimulated inflammation in vitro. FATP1 displayed acyl-CoA synthetase activity for long chain fatty acids in MΦs and modulated lipid mediator metabolism in MΦs. CONCLUSION: Our findings provide evidence that FATP1 is a novel regulator of MΦ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation in vitro and increased local and systemic components of the metabolic syndrome in HFD-fed Fatp1 (B-/-) mice. In contrast, gain of FATP1 activity in MΦs suggested that Fatp1-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated
    corecore