328 research outputs found

    The EU’s designation of Hezbollah’s military wing as a terrorist group is a critical step toward preventing its illicit activities in Europe.

    Get PDF
    Last month the EU added Hezbollah’s military wing to its ‘blacklist’ of terrorist organisations. Matthew Levitt gives an overview of the developments that have led to the EU’s decision, and assesses its likely impact on Hezbollah’s operations. He argues that in addition to giving EU member states the legal basis to investigate Hezbollah’s actions, the decision also sends a clear message that any illicit activities being carried out in Europe will no longer be tolerated

    How Many of the Uninsured Can Purchase a Marketplace Plan for Less than Their Shared Responsibility Penalty?

    Get PDF
    The Affordable Care Act (ACA) has expanded health insurance coverage by offering both penalties and incentives. The ACA expanded eligibility for Medicaid, and low and middle-income households who earn too much to qualify can purchase subsidized coverage on the health insurance marketplaces using premium assistance tax credits. Individuals, who do not obtain coverage, are subject to a tax penalty under the law's individual mandate unless they meet certain exemptions. While the percent of the population without health coverage has decreased substantially since the major coverage expansion in the ACA, about 10% of the population is still uninsured. Some of those who remain uninsured are eligible for premium subsidies large enough to cover the entire cost of a bronze plan, which is the minimum level of coverage people can buy to satisfy the individual mandate. Others could obtain coverage, after taking into account premium subsidies, for less than the penalty they would have to pay under the individual mandate. This analysis looks at the non-elderly uninsured eligible to enroll in a marketplace plan to determine how many of them would be financially better off enrolling in coverage than paying the penalty

    Identification and estimation of quantum linear input-output systems

    Get PDF
    The system identification problem is to estimate dynamical parameters from the output data, obtained by performing measurements on the output fields. We investigate system identification for quantum linear systems. Our main objectives are to address the following general problems: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realisation from sufficient input-output data? (3) How well can we estimate the parameters governing the dynamics? We investigate these problems in two contrasting approaches; using time-dependent inputs (Sec. 3.7.1 or time-stationary (quantum noise) inputs (Sec. 3.7.2). In the time-dependent approach, the output fields are characterised by the transfer function. We show that indistinguishable minimal systems in the transfer function are related by symplectic transformations acting on the space of system modes (Ch. 6). We also present techniques enabling one to find a physical realisation of the system from the input-output data. We present realistic schemes for estimating passive quantum linear systems at the Heisenberg limit (Ch. 7) under energy resource constraint. ‘Realistic’ is our primary concern here, in the sense that there exists both experimentally feasible states and practical measurement choices that enable this heightened performance for all passive quantum linear systems. We consider both single parameter and multiple parameter estimation. In the stationary approach, the characteristic quantity is the power spectrum. We define the notion of global minimality for a given power spectrum, and characterise globally minimal systems as those with fully mixed stationary state (Sec. 6.1). The power spectrum depends on the system parameters via the transfer function. Our main result here is that under global minimality the power spectrum uniquely determines the transfer function, so the system can be identified up to a symplectic transformation (see Secs. 6.5, 6.4 6.11). We also give methods for constructing a globally minimal subsystem directly from the power spectrum (see Sec. 6.3). These results hold for pure inputs, we discuss extensions to mixed inputs and the use of additional input channels; using an appropriately chosen input in the latter case ensures that the system is always globally minimal (hence identifiable). Finally, we discuss a particular feedback control estimation problem in Chs. 8 and 9. In general, information about a parameter within a quantum linear system may be obtained at a linear rate with respect to time (in both approaches above); the so-called standard scaling. However, we see that when the system destabilises, so that its system matrix has eigenvalues very close to the imaginary axis, the quantum Fisher information is enhanced, to quadratic (Heisenberg) level. We give feedback methods enabling one to destabilise the system and give adaptive procedures for realising the Heisenberg bounds

    Identification of single-input–single-output quantum linear systems

    Get PDF
    The purpose of this paper is to investigate system identification for single-input–single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016)] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix

    Identification of single-input–single-output quantum linear systems

    Get PDF
    The purpose of this paper is to investigate system identification for single-input–single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016)] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix

    Maternal morbidity in the first year after childbirth in Mombasa Kenya; a needs assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sub-Saharan Africa, few services specifically address the needs of women in the first year after childbirth. By assessing the health status of women in this period, key interventions to improve maternal health could be identified. There is an underutilised opportunity to include these interventions within the package of services provided for woman-child pairs attending child-health clinics.</p> <p>Methods</p> <p>This needs assessment entailed a cross-sectional survey with 500 women attending a child-health clinic at the provincial hospital in Mombasa, Kenya. A structured questionnaire, clinical examination, and collection of blood, urine, cervical swabs and Pap smear were done. Women's health care needs were compared between the early (four weeks to two months after childbirth), middle (two to six months) and late periods (six to twelve months) since childbirth.</p> <p>Results</p> <p>More than one third of women had an unmet need for contraception (39%, 187/475). Compared with other time intervals, women in the late period had more general health symptoms such as abdominal pain, fever and depression, but fewer urinary or breast problems. Over 50% of women in each period had anaemia (Hb <11 g/l; 265/489), with even higher levels of anaemia in those who had a caesarean section or had not received iron supplementation during pregnancy. Bacterial vaginosis was present in 32% (141/447) of women, while 1% (5/495) had syphilis, 8% (35/454) <it>Trichomonas vaginalis </it>and 11% (54/496) HIV infection.</p> <p>Conclusion</p> <p>Throughout the first year after childbirth, women had high levels of morbidity. Interface with health workers at child health clinics should be used for treatment of anaemia, screening and treatment of reproductive tract infections, and provision of family planning counselling and contraception. Providing these services during visits to child health clinics, which have high coverage both early and late in the year after childbirth, could make an important contribution towards improving women's health.</p
    • …
    corecore