12 research outputs found

    The disturbance of fluvial gravel substrates by signal crayfish (Pacifastacus leniusculus) and the implications for coarse sediment transport in gravel-bed rivers

    Get PDF
    Signal crayfish are an internationally widespread invasive species that can have important detrimental ecological impacts. This thesis aims to determine whether signal crayfish have the potential to also impact the physical environment in rivers. A series of experiments were undertaken in purpose-built still-water aquaria using a laser scanner to obtain Digital Elevation Models (DEMs) of narrowly-graded gravel surfaces before and after exposure to crayfish. The difference between DEMs was used to quantify volumetric changes in surface topography due to crayfish activity. Two distinct types of topographic change were identified. The first was the construction of pits and mounds which resulted in an increase in surface roughness and grain exposure. The second was the rearrangement of surface material caused by crayfish brushing past grains when walking and foraging, reorientating grains and altering friction angles. A series of 80 flume runs were undertaken to quantify alterations made by crayfish to water-worked, as well as loose, gravel substrates at low velocity flows. Crayfish significantly altered the structure of water-worked substrates, reversing the imbrication of surface grains to a more random arrangement. Surfaces were entrained at a relatively high velocity flow subsequent to crayfish activity in order to directly link topographic and structural alterations to substrate stability. Nearly twice as many grains were mobilised from surfaces which had been disturbed by crayfish in comparison to control surfaces that were not exposed to crayfish. A field investigation aimed to determine the potential significance of the geomorphic impact of crayfish in rivers. Signal crayfish were tracked through a 20 m reach of a small, lowland alluvial river for 150 days using a Passive Integrated Transponder (PIT) system. Crayfish were active throughout the channel, although their activity became limited as water temperature dropped and flow stage increased. Substrate was not an important determinant of crayfish activity at this scale. Instead, crayfish tended to be found along the inner bank of a meander bend where there was a substantial cover of macrophytes. Consequently, signal crayfish were active for extended periods on substrates of a similar size to those that they could disturb in flume experiments. These results suggest that signal crayfish could have important geomorphic effects in rivers, disturbing bed structures and increasing the mobility of coarse material. This may have important implications for both the management of some rivers and benthic organisms that reside on the river bed

    Seeing the landscape for the trees: metrics to guide riparian shade management in river catchments

    Get PDF
    Rising water temperature (Tw) due to anthropogenic climate change may have serious consequences for river ecosystems. Conservation and/or expansion of riparian shade could counter warming and buy time for ecosystems to adapt. However, sensitivity of river reaches to direct solar radiation is highly heterogeneous in space and time, so benefits of shading are also expected to be site specific. We use a network of high-resolution temperature measurements from two upland rivers in the UK, in conjunction with topographic shade modeling, to assess the relative significance of landscape and riparian shade to the thermal behavior of river reaches. Trees occupy 7% of the study catchments (comparable with the UK national average) yet shade covers 52% of the area and is concentrated along river corridors. Riparian shade is most beneficial for managing Tw at distances 5–20 km downstream from the source of the rivers where discharge is modest, flow is dominated by near-surface hydrological pathways, there is a wide floodplain with little landscape shade, and where cumulative solar exposure times are sufficient to affect Tw. For the rivers studied, we find that approximately 0.5 km of complete shade is necessary to off-set Tw by 1°C during July (the month with peak Tw) at a headwater site; whereas 1.1 km of shade is required 25 km downstream. Further research is needed to assess the integrated effect of future changes in air temperature, sunshine duration, direct solar radiation, and downward diffuse radiation on Tw to help tree planting schemes achieve intended outcomes

    Nocturnal river water temperatures: spatial and temporal variations

    Get PDF
    Nocturnal water temperature (Tw) affects the behaviour of aquatic biota and metabolism of whole rivers. However, night-time water temperature (nTw) is poorly understood because spot samples are typically taken during daylight hours, or Tw series are aggregated in ways that mask sub-daily properties. This paper examines 15-minute measurements of Tw and air temperature (Ta) collected at 36 sites in the Rivers Dove and Manifold, English Peak District. Data were stratified by day and night then analysed using hysteresis, auto-correlation and logistic regression techniques. Daily hysteresis loops show lagged responses between nTw and previous daylight air temperatures (dTa), plus the influence of groundwater and discharge variations. Logistic regression models were modified using a seasonal factor and explained between 80 and 94% of the variance in daily maximum nTw; minimum nTw were predicted with less skill, particularly for headwater sites in summer. Downstream variations in model parameters also reflect the influence of groundwater and/or riparian shade, and prevailing weather conditions. A case is presented where an intense summer storm resulted in the propagation of a thermal wave that produced maximum Tw at some sites during hours of darkness. Hence, our findings show that Tw management by riparian shade has to be seen in a catchment wide context, with anticipated benefits normalised for weather variability, extreme rainfall events, local influence of groundwater, and channel structures

    Inferring air-water temperature relationships from river and catchment properties

    Get PDF
    Water temperature (Tw) is a key determinant of freshwater ecosystem status and cause for concern under a changing climate. Hence, there is growing interest in the feasibility of moderating rising Tw through management of riparian shade. The Loughborough University Temperature Network (LUTEN) is an array of 36 water and air temperature (Ta) monitoring sites in the English Peak District set-up to explore the predictability of local Tw, given Ta, river reach, and catchment properties. Year 1 of monitoring shows that 84%-94% of variance in daily Tw is explained by Ta. However, site-specific logistic regression parameters exhibit marked variation and dependency on upstream riparian shade. Perennial spring flows in the lower River Dove also affect regression model parameters and strongly buffer daily and seasonal mean Tw. The asymptote of the models (i.e. maximum expected Tw) is particularly sensitive to groundwater inputs. We conclude that reaches with spring flows potentially offer important thermal refuges for aquatic organisms against expected long-term warming of rivers and should be afforded special protection. © 2013 John Wiley & Sons, Ltd

    Increase in coarse sediment transport associated with disturbance of gravel river beds by signal crayfish (Pacifastacus leniusculus)

    Get PDF
    There is growing acknowledgement of the interaction between animals and the river bed on which they live and the implications of biological activity for geomorphic processes. It has been observed that signal crayfish (Pacifastacus leniusculus) disturb gravel substrates, potentially promoting sediment transport and impacting ecological communities. However, the mechanisms involved and the extent of their impact remain poorly understood, especially in relation to other processes that affect grain mobility in gravel-bed rivers. A series of flume experiments, using loose and water-worked gravel beds of narrowly graded grain sizes that were exposed to 6 h of crayfish activity under low-velocity flows, showed a substantial increase in the number of grains entrained by subsequent higher-velocity flows when compared with control runs in which crayfish were never introduced. Crayfish alter the topography of their substrate by constructing pits and mounds, which affect grain protrusion. When walking and foraging, they also alter gravel fabric by reorienting and changing the friction angle of surface grains. In water-worked surfaces, this fabric rearrangement is shown to lead to a statistically significant, partial reversal of the structuring that had been achieved by antecedent flow. For these previously water-worked surfaces, the increase in entrainment arising from disturbance by crayfish was statistically significant, with grain transport nearly twice as great. This suggests that signal crayfish, an increasingly widespread invasive species in temperate latitudes beyond their native NW North America, have the potential to enhance coarse-grained bedload flux by altering the surface structure of gravel river beds and reducing the stability of surface grains. This study illustrates further the importance of acknowledging the impact of mobile organisms in conditioning the river bed when assessing sediment entrainment mechanics in the context of predicting bedload flux

    The zoogeomorphology of case-building caddisfly: quantifying sediment use

    Get PDF
    Caddisfly (Trichoptera) larvae are an abundant and widespread aquatic insect group characterised by the construction of silk structures, including nets and cases. Case building caddisfly have the potential to modify the sorting and mobility of sand and fine gravel via; 1) case construction, resulting in altered sediment properties; 2) transporting sediment incorporated into cases over the river bed and; 3) changing the structure of river-beds via burrowing. To investigate these mechanisms, it is necessary to understand the mass, size distribution and spatial variability of sediment use by case-building caddisfly larvae. We quantified the mineral sediment used by individuals and communities of case building caddisfly in 27 samples, from three sites on a gravel-bed stream. The mass and size distribution of sediment in individual cases varied between taxa (mass = 0.001 – 0.83 g, D50 = 0.17 – 4 mm). The mean mass of sediment used by the caddisfly community was 38 g m-2 and varied locally. Sediment use was predominantly coarse sand (D50 = 1 mm). 64% of sediment use was attributable to Agapetus fuscipes (Glossosomatidae). Due to within-species variability in case mass, the abundance of most taxa, including A. fuscipes, was only weakly associated with the mass of sediment used at the river scale. Whilst the caddisfly community used a small percentage of the total sediment available (average 2.99% of the 1 - 1.4 mm size fraction), A. fuscipes used more fine sediment in their cases at sites where it was more available. Despite variability in local habitat, all sites supported diverse case-building caddisfly communities utilising mineral sediment. Consequently, geomorphological effects of case-building caddisfly are potentially widespread. The results provide novel insights into the specific grain sizes and quantities of fine sediment particles (g m-2) used by caddisfly larvae, which represents an important step towards understanding their zoogeomorphic activities

    The “dirty dozen” of freshwater science: Detecting then reconciling hydrological data biases and errors

    Get PDF
    Sound water policy and management rests on sound hydrometeorological and ecological data. Conversely, unrepresentative, poorly collected or erroneously archived data introduces uncertainty regarding the magnitude, rate and direction of environmental change, in addition to undermining confidence in decision-making processes. Unfortunately, data biases and errors can enter the information flow at various stages, starting with site selection, instrumentation, sampling/ measurement procedures, post-processing and ending with archiving systems. Techniques such as visual inspection of raw data, graphical representation and comparison between sites, outlier and trend detection, and referral to metadata can all help uncover spurious data. Tell-tale signs of ambiguous and/or anomalous data are highlighted using 12 carefully chosen cases drawn mainly from hydrology (‘the dirty dozen’). These include evidence of changes in site or local conditions (due to land management, river regulation or urbanisation); modifications to instrumentation or inconsistent observer behaviour; mismatched or misrepresentative sampling in space and time; treatment of missing values, post-processing and data storage errors. As well as raising awareness of pitfalls, recommendations are provided for uncovering lapses in data quality after the information has been gathered. It is noted that error detection and attribution are more problematic for very large data sets, where observation networks are automated, or when various information sources have been combined. In these cases, more holistic indicators of data integrity are needed that reflect the overall information life-cycle and application(s) of the hydrological data

    Stabilization of fine gravels by net-spinning caddisfly larvae

    Get PDF
    We examined the impact of Hydropsychidae caddisfly larvae on the incipient motion of two sizes of narrowly graded fine-gravel (4–6 and 6–8 mm). This impact was assessed relative to the collective impact of other abiotic and biotic processes that are potentially important conditioning agents of fine-gravels. Trays of gravel were placed in the River Soar, Leicestershire, UK, where they were colonized to natural densities by caddisfly larvae. Identical trays that were surrounded by a 250 μm mesh were also deployed, preventing colonization but allowing field conditioning of sediments, including minor reworking of grains and biofilm development. After 21 days in the river, trays were removed to a laboratory flume where grain entrainment stresses were established. In addition to the colonized and conditioned treatments, critical shear stresses were measured for identical sediments that were not placed in the river (laboratory gravels). Gravels that were colonized by Hydropsychidae required significantly greater shear stresses for entrainment than conditioned trays (p ≤ 0·002), however, there was no significant difference between conditioned and laboratory gravels. This implies that the presence of caddisfly can be a more important influence on fine-gravel stability than some conditioning processes. Shields parameter was compared across treatments and across the two gravel size-fractions using two-way ANOVA. No significant differences or interactions were observed, indicating that 4–6 mm gravel was stabilized to a similar degree as 6–8 mm gravel by conditioning and colonization processes. Our results extend earlier studies in two important ways: (1) entrainment stresses were established for fine gravels that were colonized at natural densities, under natural stream conditions; and (2) the caddisfly effect was measured relative to both field-conditioned and unconditioned laboratory controls. The temporal and spatial distribution of silk-spinning caddisfly larvae suggests that they have the potential to influence fine-sediment mobility in many rivers, worldwide

    What else do managers need to know about warming rivers? A United Kingdom perspective

    No full text
    River flow and water temperature are fundamental controls of freshwater ecosystems. Hence, future warming could impact valued habitats and species, particularly those with cold water preferences (such as salmonids). Warming could also exacerbate existing environmental pressures or diminish the effectiveness of management interventions. Climate model projections provide compelling evidence of the need for adaptation despite uncertainty about the timing, nature, and distribution of impacts on water quality, vulnerable species, and habitats. Low-regret adaptation options to manage temperature impacts include increasing riparian shade, enhancing thermal refugia, and removing thermal barriers or hotspots. Indirect controls include managing river flows through abstraction and discharge regulation, moderating flow control structures, and manipulating channel hydromorphology. However, fundamental gaps in understanding may limit the effectiveness of some of these measures, leading to undesired side effects, wasted resources, ineffectual outcomes, or limited uptake. These knowledge gaps include where to target measures, how to implement in different situations, how to maximize co-benefits and integrate with other policy objectives, and how to support implementation across rural and agricultural landscapes. Despite many uncertainties, restoration of riparian shade and river flows has the potential to deliver multiple benefits even if this does not include retarding rates of warming

    Diel patterns of suspended sediment flux and the zoogeomorphic agency of invasive crayfish

    No full text
    The role of biotic forcing in fluvial geomorphology is understudied. This paper investigates the suggestion that the activities of signal crayfish (Pacifastacus leniusculus) can increase suspended sediment fluxes in rivers. Previous field work, supported by mesocosm experiments, suggests that crayfish nocturnalism can cause night time increases in turbidity, but field data are limited to a 16-hour period from a single site where suspended sediment time-series are not available. Here, field data collected over a 28-day period on the Brampton Branch of the River Nene, UK, are used to quantify the impact of diel fluctuations in suspended sediment concentration on sediment fluxes. Field observations and laboratory experiments are used to evaluate the likelihood that crayfish, which are abundant in this river, are responsible for the diel patterns. Turbidity and water stage were measured at 2-minute intervals at a single site. Water was sampled for suspended sediment concentration on a diel cycle and during storm events. A relation between suspended sediment concentration and turbidity, along with a local discharge time-series, permitted calculation of sediment flux and sediment loads. Aquarium experiments with one or two crayfish were used to directly observe the relative impacts of crayfish activity and conspecific interactions on sediment suspension. Over the 28-day period, turbidity and suspended sediment exhibited a strong diel pattern, characterised by night-time increases in the frequency and magnitude of spikes in the turbidity data and by increases in ambient suspended sediment concentrations. Small diel fluctuations in stage were also measured, but the rises in stage were out of phase with turbidity and there was no correlation between stage and turbidity at any frequency. In the absence of a credible hydraulic explanation for the increases in night-time suspended sediment concentration, several lines of evidence, including results from the aquarium experiments, strongly suggest that crayfish are the most likely cause. We estimate that crayfish activity contributed at least 20% of the suspended sediment load over the 28-day period (which included two moderate floods) and this proportion was 47% during the days when baseflow conditions prevailed. This work extends and strengthens the argument that crayfish are important zoogeomorphic agents with potential implications for managing fine sediment pressures. It also highlights the need to better understand the link between crayfish activity, sediment suspension and downstream dispersal, particularly the catchment-scale distribution and seasonality of such impacts
    corecore