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Abstract (max. 300 words) 

There is growing acknowledgement of the interaction between animals and the river bed on 

which they live and the implications of biological activity for geomorphic processes. It has 

been observed that signal crayfish (Pacifastacus leniusculus) disturb gravel substrates, 

potentially promoting sediment transport and impacting ecological communities. However, 

the mechanisms involved and the extent of their impact remain poorly understood, especially 

in relation to other processes that affect grain mobility in gravel-bed rivers. A series of flume 

experiments, using loose and water-worked gravel beds of narrowly-graded grain sizes that 

were exposed to six hours of crayfish activity under low-velocity flows, showed a substantial 

increase in the number of grains entrained by subsequent higher-velocity flows when 

compared with control runs in which crayfish were never introduced. Crayfish alter the 

topography of their substrate by constructing pits and mounds, which affect grain protrusion. 

When walking and foraging, they also alter gravel fabric by reorienting and changing the 

friction angle of surface grains. In water-worked surfaces, this fabric rearrangement is shown 

to lead to a statistically significant, partial reversal of the structuring that had been achieved 

by antecedent flow. For these previously water-worked surfaces, the increase in entrainment 

arising from disturbance by crayfish was statistically significant, with grain transport nearly 

twice as great. This suggests that signal crayfish, an increasingly widespread invasive 

species in temperate latitudes beyond their native NW North America, have the potential to 

enhance coarse-grained bedload flux by altering the surface structure of gravel river beds 

and reducing the stability of surface grains. This study illustrates further the importance of 

acknowledging the impact of mobile organisms in conditioning the river bed when assessing 

sediment entrainment mechanics in the context of predicting bedload flux.  

 

Keywords: 

Ecosystem engineering, zoogeomorphology, invasive species, gravel-bed rivers, bedload 
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Introduction 

Bedload transport in rivers has been studied intensively for over 100 years (Du Buoys, 1879; 

Gilbert, 1914; Buffington and Montgomery, 1997). However, the vast majority of research on 

transport has been undertaken in isolation from ecological processes, despite the number 

and diversity of organisms that live on, above and within the channel bed and knowledge 

established in other aquatic environments that animals can modify substrate conditions 

(Murray et al., 2002). There is growing acknowledgement in river science that mobile 

organisms can influence transport both directly and indirectly (Moore, 2006). However, this 

research is dominated by the study of relatively few species (viz. salmonid fish, beavers), 

which is surprising, given that many others have been observed to have potential 

geomorphic impacts, including the foraging and nesting of non-salmonid fish and the 

deliberate and inadvertent activity of many species of insect larvae and crustaceans (see 

Rice et al., in review). Animals not only have the potential to disturb substrates but also 

stabilise them. So, for instance, hydropsychid caddisfly larvae bind bed material with the silk 

that they spin in order to construct filter nets and other structures, so increasing the shear 

stress required to entrain gravels (Statzner et al., 1999; Cardinale et al., 2004; Johnson et 

al., 2009). Consequently, the interaction between organisms and the channel bed is likely to 

have substantial and varied impacts on geomorphic processes in many river reaches. 

 

Crayfish are large, freshwater crustaceans which have an ecological impact that can be 

disproportionate to their biomass due to their role as shredders, breaking down organic 

matter into smaller pieces and so providing food for many other invertebrates (Momot, 1995; 

Nyström et al., 1996; Schofield et al., 2001). Crayfish also graze plants and algae. This can 

increase habitat heterogeneity which, when coupled with their shredding of organic matter 

and their predation of many invertebrate species, leads to complex interactions with other 

organisms. Crayfish occur on all continents, with the exception of Antarctica, and have 

become successful as invasive species outside their native range through introduction by 

humans, whether deliberate or inadvertent. Because of their important ecological 

interactions, their relatively large size, their long life and their high densities, crayfish are 

considered to be amongst the most notorious invasive species in freshwater environments, 

having significant and pervasive deleterious impacts on existing ecological communities 

(Lodge et al., 1998; Gherardi et al., 2006). A particular example is the signal crayfish 

(Pacifastacus leniusculus), which has become established in parts of western USA, Europe 

and Japan. In the British Isles, it has had not only important detrimental ecological impacts, 

killing or out-competing fish and removing plant cover, it has also spread a disease, to which 
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it is immune, that has led the native white-claw crayfish (Austropotamobius pallipes), which it 

also out-competes, to become endangered (Nyström and Strand, 1996; Guan and Wiles, 

1997; Holdich et al., 1999; Vorburger and Ribi, 1999; Usio et al., 2001; Stenroth and 

Nyström, 2003; Crawford et al., 2006). 

 

In addition to their often detrimental ecological interactions, crayfish also affect the 

geomorphic environment, leading to habitat disturbance for native species. Signal crayfish 

have been found to burrow into cohesive bank material, sometimes extensively, and this has 

been reported to cause localised bank collapse where densities are high (Guan, 1994). They 

have also been found to rework gravels up to 38 mm in diameter in still-water experiments, 

creating topographic pits and mounds and rearranging surface grains after only a few hours 

of activity, potentially altering the stability of coarse-grained river beds (Johnson et al., 2010). 

There is evidence that the activity of signal crayfish can affect the flux of fine-grained 

sediment in low-energy rivers of British lowlands, with plumes of suspended material 

recorded unexpectedly at night during periods of high crayfish activity but steady flow 

(Harvey et al., in press a; b). Other crayfish species have also been found to have 

geomorphic impacts. In particular, Statzner et al. (2000, 2003a), found that the crayfish 

Orconectes limosus increased the mobility of mixed sand-gravel in an experimental channel 

and changed the depth of the channel-bed sediments, a feature interpreted as indicative of 

alterations made to the sand-gravel structure. These findings have been corroborated by 

field observations in New Zealand of Koura crayfish (Paranephrops planifrons) disturbing 

gravel grains when foraging (Parkyn et al., 1997). Furthermore, several species have been 

observed to prevent fine sediment accumulation on the bed surface by encouraging low-flow 

winnowing as they look for food by probing interstices (Parkyn et al., 1997; Creed and Reed, 

2004; Usio and Townsend, 2004; Matsuzaki et al., 2009).  

 

Some of the most damaging invasions arise from the introduction of species that disturb or 

alter the physical environment. Not only do native organisms have to survive new pressures 

from competition and predation, they also must respond to an altered habitat (Vitousek, 

1990). Consequently, understanding the extent to which signal crayfish affect 

geomorphological processes is also important for determining the nature of their impact on 

the native ecological community. Johnson et al. (2010) complemented early investigations 

by Stazner et al. (2000, 2003a), in a series of still-water experiments. These found that 

crayfish had a substantial impact on the topography of gravel substrates, moving large 

volumes of material both by brushing against grains when walking and by constructing pits 
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and mounds. This paper builds on that study, aiming to establish the link between the 

reworking of river-bed gravels by crayfish and changes in sediment stability. There are three 

specific objectives: 

i) To quantify the impact of crayfish activity on the micro-topography and fabric of previously 

water-worked and loose gravels under low-velocity flows; 

ii) To determine whether crayfish activity results in grain-scale structural change at the 

channel-bed surface, that has potential significance for sediment entrainment mechanics; 

iii) To determine whether sediment reworking by crayfish has a significant impact on the 

stability and entrainment of gravels during high-velocity flows that are typical of rain-fed 

floods or freshets. 

 

Methods 

Experimental overview 

Experiments were conducted under controlled flow conditions in a glass-walled, tilting, 0.6m 

wide laboratory flume. Narrowly-graded gravels (11–16, 16–22 mm) were placed in the 

experimental section of the flume and screeded flat (Figure 1). Both upstream and 

downstream of this experimental area, a 0.1 m deep bed of 25–35 mm river gravels was 

used to generate a boundary layer similar to that found in natural gravel-bed rivers. In half of 

the experimental runs, the surface of the experimental area was left as a loose, random 

arrangement of gravel (series 1) and, in the other half, the surfaces were water-worked. 

Crayfish were then introduced in both series under a low-velocity flow and left for six hours, 

their behaviour being continuously recorded with submerged digital video cameras. Laser 

scans of the gravel surfaces before and after water-working, as well as before and after 

crayfish activity, were obtained and compared in order to assess both micro-topographic and 

grain-structure alterations. The patches of gravel were then entrained in the flume under a 

high-velocity flow and the mobility quantified from digital video recordings. Grain movements 

on surfaces which had been disturbed by crayfish were then compared with those of control 

runs, the surfaces of which had been subject to the same pre-conditioning but on which no 

crayfish had been present.  
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Selection of the two grain-size fractions (11–16, 16–22 mm) was based on the results of 

experiments in still-water aquaria, which revealed a distinct change in the nature and 

magnitude of bed disturbance at a grain size of about 16 mm (Johnson et al., 2010). By 

using these size fractions, this behavioural change could be further studied. The gravel was 

derived from the River Lune, NW England, and was predominately bladed (Sneed and Folk, 

1958) and well rounded (0.8; Krumbein, 1941). Grain density was 2650 kg m-3 (Graham et 

al., 2005).  

 

Crayfish were trapped in Wood Brook, a small gravel-bed stream near Loughborough, UK 

(1°13’41’’ W., 52°45’24’’ N.), under licence from the Environment Agency of England and 

Wales and the Department for Environment, Food and Rural Affairs (DEFRA) and housed 

individually in large aquaria (see Johnson et al., 2010 for additional details). Only crayfish 

without obvious injury, with a carapace length of 55 ± 5 mm and a subaerial weight of 55 ± 

10 g were selected for use in these experiments.  

 

When crayfish were deployed in the flume, they were kept within the experimental area 

using a thin-wire, 10 mm mesh cage 0.6 m long, 0.4 m wide and 0.3 m high (Figure 1). The 

cage was only used during low-velocity flows and was not left in the flume during the grain-

structuring or entrainment stages of the experiments. The cage was seated on four fixed 

reference points to ensure that it covered exactly the same area in all runs. These reference 

points were also used to rectify laser-scanned images. The location of the cage provided a 

0.1 m wide buffer on each flank of the experimental area; these were intended to prevent 

activity in the zones most affected by side-wall drag and to deny the crayfish use of the 

flume walls.  

 

Experimental procedure and hydraulic conditions 
All flows were turbulent and sub-critical, with a water surface parallel to the bed surface. 

During each run, flow measurements were taken with an acoustic Doppler velocimeter 0.1 m 

downstream from the experimental area. Five velocity profiles were measured for each of 

the three flows in order to quantify the hydraulic environment and assess the replicability of 

the flow conditions. Bed shear stress (τi) was estimated according to the law of the wall as: 

𝜏𝑖  = ρ 𝑣∗2                                                                                                                                 (eq. 1) 
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where ρ is water density (= 1000 kg m-3) and v* is shear velocity. Shear velocity was 

estimated from: 

𝑣∗  =
c
𝑏

                                                                                                                                     (eq. 2) 

where c = 2.5 and is the reciprocal of the von Karman constant for clear water flows, κ = 

0.41, and the parameter b is the slope of a linear least-squares regression of velocity (m s-1) 

on the logarithm of depth (m) in the measured profile (r2 values ranged from 0.953 – 0.997). 

To enable a comparison of the shear stresses for both grain sizes, the dimensionless 

Shields’ parameter (θi) was calculated as:  

𝜃𝑖  =
𝜏𝑖

(𝜌𝑠 − 𝜌)𝑔D𝑖
                                                                                                                 (eq. 3) 

where τi is the shear stress at each flow over grain size Di, g is the acceleration due to 

gravity (= 9.81 m s-2) and ρs is sediment density (= 2650 kg m-3). 

 

Initially, the experimental area was filled with one of the grain-size fractions and gently 

screeded flat. The surface was then laser-scanned and the data used to create a DEM. To 

water-work the test-beds in series 2 experiments, the flume channel was slowly filled with 

water, ensuring no disturbance, then the tail weir and pump were altered to generate 

moderate bed particle movement   (average velocity [v] = 0.4 m s-1; local boundary shear 

stress [τ] = 2.18 Nm-2; Shields’ dimensionless shear stress parameter [θ] = 0.01; series 2; 

Table 1). The flume was left running for two hours to structure the surface, after which 

discharge was gradually reduced to zero and the flume channel was slowly drained. During 

the two hours, gravel was fed upstream of the experimental area at a similar rate to its 

transport out of the patch. The water-worked surfaces were then laser scanned. After 

scanning the initially loose (series 1) or water-worked surfaces (series 2), the cage was 

placed over the experimental area.  

 

Once the cage was in place, the flume was slowly filled with water and a flow suitable for 

crayfish occupation was established (v = 0.1 m s-1; τ = 0.14 Nm-2; θ = 0.0005; Table 1) which 

was unable to disturb the surface gravels or limit the movement of crayfish. A single animal 

was then released approximately 0.05 m from the channel bed and allowed to drift down to 

the surface. A total of 20 crayfish were used in the 40 flume runs that involved crayfish, each 

animal being used twice. While crayfish were in the flume, the channel was covered to 
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create a dark environment because crayfish are nocturnal and covering avoided 

complications associated with moving shadows. A large water cooler was used to keep 

water temperature between 15°C and 20°C. The crayfish were left in this constant flow for 

six hours after which they were removed by hand and the flume was slowly drained. The 

cage was then removed and the surface laser scanned again.  

 

Finally, the flume was re-filled and a high-velocity flow was imposed (v = 0.9 m s-1; τ = 10.5 

Nm-2; θ = 0.05; Table 1). This entrainment flow was established consistently for each run and 

was imposed for two hours, during which the experimental area was continuously monitored 

with video cameras. After two hours, the flume was slowly drained and another laser scan of 

the surface was obtained.  

 

This procedure was replicated 10 times for each of the four crayfish-modified substrate types 

(loose and water-worked 11–16 and 16–22 mm grain sizes). In order to provide control runs, 

the procedure was also replicated without crayfish a further ten times for each substrate 

type, giving a total of 80 runs. During control runs, the cage was placed in the flume and left 

for six hours of low-velocity flow but, in each case, no crayfish were introduced.  

 

Analysis of laser scanned surfaces 

Surface models were each obtained from two laser scans, both perpendicular to the bed. 

These scans were merged to form a single surface. Surfaces were then cropped, orientated, 

rectified and imported into ArcGIS where they were interpolated into raster digital elevation 

models (DEMs) and detrended following the same procedure described by Johnson et al. 

(2010). Topographic changes due to crayfish activity were obtained by calculating DEMs of 

difference (DoDs). This was achieved by subtracting the z-values of each cell of the surfaces 

before and after water-working or crayfish activity. Error analysis (Johnson et al., 2010) 

haspreviously established that a minimal discernable difference of ± 1 mm is appropriate. 

 

Geostatistical analyses of the surface structure were performed in ArcGIS. The surface 

roughness was paramaterised by the standard deviation of elevation measurements (z 

values; Aberle and Smart, 2003). The granular structure (fabric) was characterised by 

quantifying the inclination of slopes in a stream-wise and cross-stream direction using the 
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inclination index (Il) derived by Smart et al. (2004). Inclination is defined as the slope 

between points at a predetermined distance. Water-worked surfaces are expected to have 

an asymmetric distribution of inclinations in a stream-wise direction due to imbrication (Smart 

et al., 2004; Hodge et al., 2009). In a cross-stream direction there should be an equal 

number of positive and negative inclinations, as there is expected to be no structure in this 

direction. The inclination index is calculated as:  

Il  =
pl − nl 

pl + nl + zl
                                                                                                              (eq. 4) 

where l is the lag distance (= 2 mm), p is the number of positive inclinations, n is the number 

of negative inclinations and z is the number of paired points which define zero slope. 

Consequently, an equal number of positive and negative inclinations will give a result of zero 

and, as asymmetry increases, Il will increase to maxima of ± 1 (Smart et al., 2004; Millane et 

al., 2006). 

 

Analysis of videography 

Videography was used to analyse the mobilisation of gravel grains during high-velocity flows. 

Establishment of entrainment thresholds is inherently subjective and as a result there have 

been numerous definitions of incipient motion and threshold transport (Neill and Yalin, 1969; 

Buffington and Montgomery, 1997). Any linear relation between size of grains moved and 

time-averaged flow stress is obscured by the influence of surface geometry and stochastic 

fluctuations in stress intensity due to turbulence and, consequently, a particular grain can be 

entrained by a range of flows rather than at a single discrete threshold (Grass, 1971; Paintal, 

1971; Lavelle and Mofjeld, 1987; Wilcock and McArdell, 1993; 1997). For this reason, rather 

than trying to determine a single entrainment threshold, the movement of grains was 

counted over a two-hour period. The imposed flow was chosen to be the lowest which was 

sufficient to induce bedload transport over the entire experimental patch (i.e. moving more 

than a few isolated grains). Although more grains were inevitably entrained from 11–16 mm 

than 16–22 mm materials, it was decided that this entrainment flow was suitable for both, 

because lesser flows did not regularly or frequently entrain bed material and higher flows 

induced scour.  

 

Video cameras were not used underwater during the entrainment runs because they would 

have altered the hydraulic environment. Instead, they were set up to record through the 
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glass side-wall of the flume. The number of mobile grains was counted by a single operator 

(MFJ) and binned in discrete periods. A grain was defined as mobile if it was displaced a 

distance greater than a single grain diameter. This gives a gross measure of surface stability 

and does not take into consideration the length of grain movement. Because a single 

operator analysed all videos, the results are expected to be consistent between runs. This 

was tested by analysing the same 120-minute video five times. The surface used was of 11–

16 mm loose gravels, as this was the most mobile and the most difficult to analyse. Nearly 

all error was associated with the first 20 minutes of entrainment because the large number of 

grains moving at the same time made counting difficult, even when played back frame-by-

frame. After 20 minutes, bedload was associated with individual grains moving infrequently, 

either in isolation or in groups of two or three, which were relatively easy to count. The total 

cumulative number of grains counted as moved differed by a maximum of 24 (mean = 16; σ 

= 5). This is 5% of the total number moved over the entire 120-minute period and was 

insufficient to modify the trends of changing mean entrainment. 

 

Results 

Micro-topographic change 

Similar to previous experiments conducted in still-water aquaria (Johnson et al., 2010), the 

volume of material moved by crayfish was partitioned into two types, based on the 

magnitude of change. Videography showing substrate disturbance by signal crayfish can be 

found at Johnson (www. 2010).  Any topographic difference greater than ±1 D50 was 

considered pit and mound construction and any change greater than the minimal discernable 

difference of ±1 mm but less than ±1 D50 was considered fabric adjustment and was 

associated with crayfish brushing past surface grains when moving or foraging. Whilst pits 

and mounds were more apparent visually, the majority of disturbance was associated with 

fabric adjustment in all cases (Figure 2). However, whilst the dominance of fabric adjustment 

had also been observed in still-water experiments (78%), it was found to be less pronounced 

in the flume (61%). 

  

The difference in the impact of crayfish on loose (series 1) and water-worked surfaces 

(series 2) in a low-velocity flow was highly significant for 11–16 mm material (ANOVA, p = 

0.002). Construction of pits and mounds and fabric rearrangement were both substantially 

reduced by prior water-working (Figure 3). However, in 16–22 mm gravels, there was no 

statistically significant difference in topographic change between loose and water-worked 



11 
 

surfaces (ANOVA; p = 0.823). Of further interest is that water-working of 11–16 mm surfaces 

reduced the volume of material moved by crayfish to a level which was not significantly 

different from that of water-worked 16–22 mm material (ANOVA; p = 1.000).  

 

Grain-structure change 

The fabric adjustment achieved by two hours of structuring flow was quantified using 

geostatistical analysis. Loose surfaces had no asymmetry in inclination frequency in either 

stream-wise or cross-stream directions, whereas water-worked surfaces had strong 

asymmetry in a stream-wise, but none in a cross-stream direction (Figure 4). Here, the 

values of the inclination index (Il = 0.07 - 0.1) are consistent with those of studies in gravel-

bed rivers, where values have been found to lie between 0.03 – 0.18 (Millane et al., 2006). 

This suggests that the flow conditions used here were successful in developing an 

appropriate bed structure. 

 

When crayfish were placed on an initially loose surface (series 1) they did not have a 

significant impact on inclination index (Figure 4a) and Il values remained very close to zero, 

indicating that animal disturbance simply produced a slightly different random arrangement 

of grains. In contrast, six hours of crayfish activity on water-worked surfaces (series 2) had a 

statistically significant impact on the stream-wise inclination index (Table 2). In 11–16 and 

16–22 mm gravels, the index was reduced by 37% and 20%, respectively (Figure 4b) 

demonstrating  that crayfish have the potential to counteract prior structuring of substrates 

by the flow, partially randomising surface inclinations. These reductions were insufficient to 

return the surfaces to Il values characteristic of an unstructured state, (paired t-test; 11–16 

mm p = 0.001; 16–22 mm p < 0.001). 

 

Six hours of exposure to signal crayfish increased surface roughness, but paired t-tests 

indicate that this was not statistically significant for initially loose (series 1; 11–16 mm p = 

0.214; 16–22 mm p = 0.701) or water-worked surfaces (series 2; 11–16 mm p = 0.135; 16–

22 mm p = 0.534). This counters the results of the still-water experiments (Johnson et al., 

2010), which found a significant correlation between surface roughness and the proportional 

area of pit and mound construction. The difference is likely to be due to the limited time 

crayfish were at work on a surface in the flume and the lack of solid side-walls, which would 

otherwise have reduced the degree of slumping of material, allowing pits to be dug deeper.  
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Sediment entrainment  

As might be anticipated, water-worked surfaces were considerably more stable than loose 

surfaces during entrainment tests. In 11–16 mm gravels, three times more grains were 

moved on average from loose surfaces than from those which had been water-worked. At 

the start of experimental runs, the number of grains mobilised rose rapidly before reaching 

an asymptote. The initial steep rise was associated with entrainment of susceptible grains, 

which were especially common on the surface of the loose, unstructured gravel. These 

vulnerable grains were either entrained and transported out of the patch, or moved to less 

vulnerable positions within the patch. As a result, the number of grains entrained per unit 

interval declined as the substrate became increasingly structured. Not surprisingly, the 

water-worked control surfaces had substantially fewer grains entrained during the initial 

period because grains in vulnerable positions or orientations had already been moved to 

more stable positions by the previous structuring flow (Figure 5). 

 

Six hours of exposure to crayfish had a substantial impact on the stability of gravel patches, 

with considerably more grains moved from crayfish-disturbed than from control surfaces 

(Figure 5). The impact of crayfish is most noticeable in the first 20 minutes of entrainment 

with more grains entrained from crayfish-disturbed substrates in comparison to control 

equivalents. This is particularly evident across previously water-worked surfaces where there 

is a large difference in the mean number of grains entrained after 20 minutes between 

crayfish-disturbed and control surfaces. On average over the two-hour period, 1.8 times 

more material was moved from previously water-worked, crayfish-disturbed surfaces than 

from water-worked control surfaces. Whilst there is a substantial difference in the mean 

number of grains entrained between controls and crayfish-disturbed surfaces for both initially 

loose (series 1) and water-worked substrates (series 2), it was only statistically significant for 

those that had been water-worked (Figure 6; Table 3).  

 

There was a significantly greater variance in number of grains entrained in runs with initially 

loose surfaces (series 1) than in runs where the bed had been water-worked (series 2) for 

both 11–16 mm and 16–22 mm bed materials (Table 3). This was not unexpected in the 

case of water-worked surfaces, because they had been structured under the same 

conditions and, therefore, had all developed a similar fabric under the imposed stress of the 
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structuring flow. In contrast, loose surfaces all had different structures, as they were 

randomly orientated distributions of grains, and this resulted in the greater range of 

entrainment counts in each series of runs. The activity of crayfish did not alter significantly 

the variance of entrainment counts within any bed type, despite increasing the total average 

number of grains entrained (Table 3). Had crayfish completely reversed the imbrication 

induced by water-working, then the variance in entrainment would have been expected to 

increase, along with the total number of grains entrained.  

 

Discussion 

The introduction of a single signal crayfish to a narrowly-graded gravel channel bed for six 

hours under low-velocity flow resulted in substantial alteration to the micro-topography and 

grain structure. The nature of this disturbance is similar to that previously described for still-

water experiments (Johnson et al., 2010). In general, these results corroborate those of 

other studies, which have suggested that other species of freshwater crayfish have impacts 

on the mobility of their substrates through their activity (Statzner et al., 2000; 2003a).  

 

Across all surfaces, crayfish-induced alterations were dominated by fabric adjustment. This 

led to partial reversal of the structuring induced by water-working (series 2) as crayfish 

walked and foraged. Crayfish activity did not structure initially unstructured, loose gravels 

(series 1): although the surface arrangement of grains was modified, it remained 

predominately random. Therefore, the magnitude of restructuring by crayfish, whilst 

statistically significant, is relatively subtle in comparison to structuring by the flow. However, 

the structuring of substrates by the flow will only occur occasionally when the bed is mobile. 

Whereas, crayfish will reverse structuring whenever they are active and cumulatively may 

have a substantial impact, especially where they occur in high densities. Also, the 

experiments demonstrate that restructuring by crayfish, when coupled with changes in 

protrusion due to the excavation of pits and building of mounds, was responsible for a 

substantial increase in the number of grains subsequently entrained by higher-velocity flow, 

though the impact was statistically significant only for previously water-worked surfaces.  

 

The impacts of topographic changes made by signal crayfish 
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The greater grain entrainment from water-worked surfaces is due to reductions in grain 

interlock and friction angle and an increase in protrusion and resulting fluid drag. However, 

there will be a proportion of grains which will have increased friction angles through minor 

rearrangement into more stable niches. There will also be those grains in pits which will be 

‘hidden’ from the flow or will have higher friction angles because they rest on slopes that 

incline downstream. Consequently, it is difficult to determine the exact impact of pit and 

mound topography or fabric adjustment on transport without more detailed, grain-by-grain 

observations, even though the overall impact of crayfish activity has been shown to be a 

reduction in the stability of the bed.  

 

The path length of grains transported from crayfish-disturbed surfaces was not quantified. A 

grain on the upstream ‘lip’ of a pit may be considered unstable but it is likely to be moved 

only the short distance into the pit, where it would occupy a relatively stable position, 

sheltered from the flow. Therefore, pits may act as temporary bedload traps. Under high 

bedload flux, displacement and entrapment would result in the topography of the bed quickly 

becoming planar, with mounded material eroded and transported into pits immediately 

downstream. If crayfish were to occur in high density then, when constructing a pit, they may 

also push mounded material into adjacent pits. In this context, Gottesfeld et al. (2008) found 

that, as the density of Chinook salmon (Oncorhynchus tshawytscha) increased, bed 

morphology changed from the dune form characteristic of salmonid spawning reaches to a 

more uniform, plane bed. Similarly, crayfish density may influence the geometry of pits and 

mounds, which would also have a substantial impact on the magnitude of substrate 

disturbance. It is unlikely that the impact of crayfish will increase linearly with density due to 

the hierarchical structuring of crayfish populations with dominant crayfish digging and 

foraging more than subordinate individuals (Goessmann et al., 2000; Herberholz et al., 

2003). It is currently unknown how interactions between signal crayfish influence their 

geomorphic impacts, but, Rice et al. (in review) have found that where two crayfish are 

present simultaneously in experiments identical to those presented here, the magnitude of 

impact does not increase in comparison to a single crayfish. 

 

The presence of pits and mounds will also have a hydraulic impact. We have shown that they 

increase surface roughness (Figure 2), although not significantly so after only six hours, and 

mounded material may create leeside zones of recirculating flow that are similar to those 

found in the vicinity of other protruding sedimentary micro-forms, such as pebble clusters 

(Hassan and Reid, 1990; Buffin-Bélanger and Roy, 1998; Lawless and Robert, 2001). These 
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hydraulic impacts will have implications for the entrainment and entrapment of grains. In 

addition, mounds will increase form drag.  Montgomery et al. (1996) found that the 

construction of redds by spawning salmonids created drag on the flow, which reduced bed 

sediment mobility, counteracting the loosening of the bed that had been achieved previously 

through redd excavation. A similar effect will also arise from the pits and mounds constructed 

by crayfish, so limiting the differences in entrainment between crayfish-worked and control 

beds (Figures 5 and 6). However, without detailed hydraulic measurements, it is difficult to 

ascertain exactly how these undulations in the bed topography influence entrainment 

mechanics. 

 

Impact of water-structuring of gravels on crayfish activity 

For 11–16 mm gravels, substantially more material was moved by crayfish on loose (series 

1) than on water-worked surfaces (series 2). As might be expected, this implies that the 

structuring of gravel substrates reduces their vulnerability to disturbance by crayfish. 

However, the same pattern is not true of coarser 16–22 mm material, where similar volumes 

of material were moved by crayfish on both loose and water-worked surfaces. It is suggested 

that this difference between beds of different grain-size reflects both grain inertia in the 

context of accidental contact and the exertion required to excavate grains of different 

submerged weight. The accidental rearrangement of grains is common in the case of the 

finer fraction used here, where the body weight of a mobile crayfish is sufficient to disturb the 

orientation and friction angle of individual grains. However observations suggested that even 

in this case, water-worked surface grains did not move as readily as did those on loose 

surfaces due to the increased stability imparted by greater grain interlock and higher friction 

angles. In coarser, 16–22 mm gravels, where the submerged weight of individual grains was 

about 0.8 times that of individual crayfish, accidental rearrangement of grains was less and 

this resulted in significantly lower volumes of moved material. The fabric adjustment that 

occurred on these coarser beds tended to result from foraging, digging and purposeful 

probing of interstices. The fact that water-working did not reduce the volume of material 

moved implies that grain weight was already an over-riding factor limiting crayfish activity.  

 

Significantly less material was moved in pit and mound construction in water-worked than 

initially loose surfaces of 11–16 mm gravels. This is likely to be due to the difficulty of 

dislodging grains from a structured surface where grains are more interlocked. Initial 

conditions had less impact in the coarser material because, again, grain weight was a limiting 
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factor. It was found that crayfish did not give up digging completely on the coarser, water-

worked surfaces, but, instead, they dug for shorter periods than they did on loose 11–16 mm 

surfaces. This suggests that, despite the fact that crayfish can dig into 16–22 mm material, 

they limit themselves, perhaps because pit digging is not a good investment of energy in 

substrates which are difficult to manipulate. To summarise, water-working limited the 

accidental reorganisation of surface fabrics by walking and foraging and reduced pit and 

mound construction by making it more difficult for crayfish to dislodge grains from the 

surface. This difference was more pronounced in finer material, if only because crayfish 

disturbance was already limited by the weight of individual grains in the coarser substrate. 

 

Potential impact of crayfish on sediment transport  

Gravel river beds are known to develop transport-limiting structures at low flows, 

progressively stabilising as grains are moved into less vulnerable positions. Reid and 

Hassan (1992) showed that the entrainment threshold in Turkey Brook, England, increased 

as a function of increasing interval since the last bed-disturbing flood, indicating a strong 

time-dependence of low-flow structuring. This supports previous results in Turkey Brook that 

found bedload transport peaked on the recession limb of flood hydrographs when an event 

followed an extended period of low flow, the rising limb having altered bed structure and 

winnowed fine material from surface interstices, loosening it before entrainment on the 

recession limb (Reid et al., 1985). Alternatively, when a flood closely followed a previous 

event, bedload transport peaked on the rising limb because the pre-flood bed surface was 

relatively unconsolidated and comparatively loose (Frostick et al., 1984; Reid et al., 1985). 

Laboratory experiments have confirmed that antecedent flows can significantly increase the 

shear stress required to entrain bed material (Paphitis and Collins, 2005; Haynes and 

Pender, 2007). Oldmeadow and Church (2006) found that, in reaches of East Creek, British 

Columbia, where the surface structure had been destroyed, bedload transport rates were 

32% higher than in undisturbed reaches, highlighting the differences in strength between 

loose and structured beds. These results have been corroborated by Lamarre and Roy 

(2008) in Moras Creek, Québec. The modification of channel-bed micro-topography and 

grain structure by crayfish undoubtedly acts to oppose this consolidation of gravel-bed rivers. 

This had been implicit in the still-water experiments reported by Johnson et al. (2010) and it 

is fully supported by the results of the flume experiments reported here, where exposure to 

crayfish substantially increased sediment mobility.  

 



17 
 

The conflict of opposing processes (crayfish disturbance versus low-flow stabilisation) leads 

to speculation about the changing dominance of each. Most imbrication and grain clustering 

will be achieved fairly rapidly on the recession limb of the flood hydrograph and minor fabric 

adjustments of framework grains and the intrusion of fine-grained matrices will continue at 

various low levels of intensity for the extended periods of low-flow that intervene between 

floods. Crayfish will take refuge during floods, but will be active in disturbing bed sediment 

during the comparatively long inter-flood periods of low flow. Invasion of signal crayfish could 

act to modify this dynamic pattern, promoting looseness of the bed even during long inter-

flood intervals, so encouraging entrainment and increasing annual bedload sediment yield. 

The impact of crayfish will depend on whether their activities counter the hydraulic and 

sedimentary processes of consolidation and this will be determined by the interval between 

successive floods and levels of crayfish activity which are associated with biological and 

abiotic controls. For example, in many temperate-zone streams, gravel-bed consolidation 

associated with prolonged low-flow periods tends to occur in summer months. This coincides 

with periods of warm temperatures which encourages increased crayfish activity.  

 

Considerations like this highlight the important need to now develop a fuller understanding of 

how experimental results can be applied at larger landscape scales and over appropriate 

time scales. This is true of all zoogeomorphic impacts, but particularly so of abundant but 

small “Cinderella” geomorphic agents which do not have obvious visible impacts on the 

landscape, like beaver ponds, but which are known to affect geomorphic processes and 

which, cumulatively, must expend very large amounts of energy in modifying the physical 

environment (Rice et al., 2010). It therefore seems reasonable to assume that invertebrates, 

like crayfish, are important agents of change with as yet unquantified impacts on river 

channel geomorphology and sediment fluxes. An ancillary study in the River Bain, 

Lincolnshire, UK (Johnson, 2010) has confirmed that crayfish occupy gravel patches with 

grain-size characteristics similar to those used in the laboratory experiments. This 

establishes the potential for crayfish to have an impact on coarse sediment movements in 

natural rivers and is a first step in linking laboratory results to field scales. 

 

Several aspects of the sediment setup need to be considered when transposing processes 

elucidated in the experiments conducted here to natural rivers. Because the water-worked 

surfaces used were narrowly-graded, they cannot be taken as representative of the naturally 

heterogeneous bed materials that are typical of most gravel-bed rivers. Despite this, several 

lines of evidence can be used to suggest that crayfish are likely to have a significant impact 
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on sedimentary processes in natural rivers. It is known that crayfish burrow against coarse 

grains (Parkyn et al., 1997), implying that a heterogeneous sediment mixture inclusive of 

cobbles or large pebbles may encourage greater amounts of digging. A heterogeneous 

sediment mixture may also make it easier for crayfish to dislodge grains, because smaller 

grains can be moved in order to dislodge a medium-sized grain and, in addition, crayfish can 

exert leverage on large grains which project from the surface. Second, the homogeneous 

substrate and flow characteristics in the experiments did not permit development of a coarse 

surface layer, typical of many gravel river beds. This may have acted to oppose disturbance 

by crayfish by making the surface more difficult to disturb. Although many rivers have armour 

layers composed of grains well within the range of sizes that crayfish can disturb, it remains 

unclear how the additional structuring of a heavily armoured surface would limit their impact..  

Third, no fine sediment was included in the test beds. This matrix material is known to 

reduce the friction angle of surface grains as well as tightening the packing of the bed. 

Reorientation of surface grains during structuring disturbs fines, which then settle back onto 

the bed, while suspended sediment transported from upstream also settles, further 

consolidating the packing arrangement (Frostick et al., 1984). Given the greater strength 

imparted to the bed by the presence of fines, the impact of crayfish might be reduced. 

However, set against this, crayfish have been found to winnow substantial quantities of fine 

material while foraging. Fine sediment can also be mobilised by the movement of legs and 

by contact between the abdomen and substrate when walking (Usio and Townsend, 2004). 

Furthermore, when frightened, crayfish escape by backwards swimming, which exerts 

considerable force on the bed and disturbs fine sediments (Webb, 1979; Cooke and 

McMillan, 1985). Indeed, a number of studies have noted that less fine material accumulates 

in substrates where crayfish are present (Parkyn et al., 1997; Creed and Reed, 2004; Usio 

and Townsend, 2004).  

 

Crayfish-sediment interactions as a disturbance to invaded environments. 

The impact of signal crayfish on physical processes will occur within a framework of abiotic 

and biotic controls. Crayfish will be active at certain times due to changes in water 

temperature and flow stage and will be limited to particular river reaches associated with 

suitable habitats. Crayfish activity, and consequently their geomorphic impact, will be further 

influenced by ecological interactions. Whilst crayfish activity is known to be affected by 

predatory fish, hunger levels and competition (Stein and Magnusson, 1976; Shave et al., 

1994; Stocker and Huber, 2001; Herberholz et al., 2003), the effect of these variables on 

their geomorphic impact is currently unknown although attempts have been made to relate 
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bed disturbance by the crayfish O.limosus to fish predators (Statzner and Sagnes, 2008). 

One of the important current challenges in this area of research is linking these non-trophic 

interactions into more traditional frameworks of organism interactions, such as food-webs 

(Jones et al., 1994; Wilby et al., 2001).  

 

Invasive species offer an interesting and potentially important example of a geomorphic 

agent as they have been removed from many of the limiting biotic and abiotic controls in 

their native range (Cuddington and Hastings, 2004). The geomorphic disturbance associated 

with invasive species in freshwater environments is only beginning to be acknowledged 

(Harvey et al. in review). Invasive species are already considered to be one of the largest 

threats to biodiversity in global freshwater environments (Lodge et al., 1998; Gherardi et al., 

2006) before factoring in the potential geomorphic impacts of some alien species, such as 

zebra mussels (Dreissena polymorpha) and crayfish (i.e. Pacifastacus, and Orconectes sp.) 

in Europe and salmonid fish (Salmo sp.) introductions in New Zealand. The signal crayfish 

provides a prime example in the UK where the favourable climatic conditions, lack of aquatic 

predators and limited competition from other species, has allowed it to spread rapidly and 

establish dense colonies, in excess of 10 m-2 in some areas. The impact of bed disturbance 

on the native community is currently unknown but would be significant if crayfish 

substantially altered bed stability. This would be in addition to the well documented 

detrimental impacts of crayfish on native organisms through ecological interactions.  

 

Conclusions 

There is a need for better understanding of the dynamic interaction between biota and their 

physical domain, not just in assessing the creation and maintenance of suitable habitats, but 

also in understanding the role of organisms in affecting physical processes. The overlap 

between biological and Earth sciences has led recently to the development of unified 

frameworks for studying these interactions (Naiman et al., 2000; Paola et al., 2006; Stallins, 

2006; Reinhardt et al., 2010; Rice et al., 2010). Signal crayfish have the potential to disturb 

water-worked gravel, altering grain structure and micro-topography and, as a consequence, 

nearly doubling bed material entrainment during subsequent high-velocity flows. Signal 

crayfish dig into substrates, creating pits and mounds. However, the predominant volumetric 

disturbance by crayfish is the rearrangement of individual surface grains when walking and 

foraging for food. This fabric adjustment has been shown to bring a partial reversal of the 

imbrication that arises from water-working through some degree of randomisation in grain 
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arrangement. This illustrates the importance of recognizing the physical interactions of 

organisms and their substrates in assessing river sediment transport. However, it also alerts 

us to the deleterious impact on physical processes that can be a consequence of the 

introduction of non-native species to regions outside their natural range. 
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Tables 

Table 1: Average flow parameters (n = 10) for each of the three flows used in the 

experimentsfor the two substrate sizes.  

Purpose of 
flow 

Grain-
size (mm) 

Discharge 
(m3 s-1) 

Depth   
(m) 

Water-
surface 
slope 

Velocity  
(m s-1) 

Shear 
stress 
(Nm-2) 

Shields’ 
parameter  
(θ) 

Grain 
structuring 

11–16 
0.06 0.25 0 0.4 

2.14 0.01 

16–22 2.21 0.01 

Crayfish 
activity 

11–16 
0.016 0.25 0 0.1 

0.14 0.0006 

16–22 0.14 0.0005 

Entrainment 11–16 
0.11 0.2 0.005 0.8 

10.47 0.05 

 16–22 10.77 0.04 

 

Table 2: The mean and standard deviation (n = 10) of inclination index for water-worked 

surfaces before and after crayfish activity (series 2 experiments). Significance levels (p 

values) derived from paired t-tests indicate the difference between water-worked surfaces 

before and after crayfish activity. 

Direction of traverse 
11 – 16 mm 16 – 22 mm 

Mean St.de

 

p-value Mean St.dev p-value 

Stream-wise 
Il 

Before 
crayfish 

0.074 0.021 

0.019 

0.106 -0.013 

0.029 
After 

crayfish 
0.046 0.023 0.083 0.034 

Cross-stream 
Il 

Before 
crayfish 

-0.008 -0.009 

0.812 

-0.013 0.015 

0.534 After 
crayfish 

-0.010 0.016 0.004 0.014 

 

Table 3: The mean and standard deviation of the number of entrained grains in 120 minutes 

for the four substrates by grain-size and by crayfish disturbance. Significance levels (p-

values) in the mean number of grains moved between control and crayfish disturbed 

surfaces are derived from an ANOVA (Tukey post-hoc test). Significance levels of the 

difference in variance in the number of grains mobilised are derived with Levene’s test. 

Antecedent bed condition 
Treatment p-values 
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and grain-size (mm) Control Crayfish 

Mean St.dev Mean St.dev Mean Variance 

Loose         11 – 16 465 124 576 165 0.107 0.327 

16 – 22 195 31 207 39 0.464 0.455 

Water-
worked 

11 – 16  147 50 264 30 < 0.001 0.359 

16 – 22  64 15 125 22 < 0.001 0.498 
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Figures 

Figure 1: The flume set-up showing in-channel camera positions (camera 1a and 2a) and 

the cage when crayfish are in the flume channel and the camera position behind the glass 

side-wall (camera 1b and 2b) when entraining substrates. The two laser scanner positions 

are also indicated. 
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Figure 2: DEM of an 11–16 mm initially water-worked surface after six hours of crayfish 

activity. Note the four distinct areas of pit construction (blue areas) and the ridges of 

mounded material (brown) which network between pits. The surface was originally planar.  
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Figure 3: The mean (± 2 SE, n = 10) volume change between surfaces before and after 

crayfish activity for loose (series 1) and water-worked (series 2) surfaces of both grain sizes. 

Grey bars indicate fabric rearrangement and white bars indicate pit and mound construction. 

Significant differences occur between columns A and B (p < 0.001) and a and b (p = 0.002).  
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Figure 4: Mean (±2 SE; n = 10) alterations to the inclination index between substrates 

before and after water-working and after crayfish activity in both stream-wise (black circles) 

and cross-stream (open circles) directions. Significance levels are derived from paired t-

tests. a) 11–16 mm. b) 16–22 mm. – rewrite, draw attention to scale difference and lose 

vertical dashed lines and make vertical solid line dashed. Same on below figures. 
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Figure 5: The cumulative number of grains moved with time under the entrainment flow. 

Lines indicate the mean, shaded regions are ± 2 SE of the mean (n = 10) a) 11–16 mm b) 

16–22 mm. Lines were constructed from 10 second grain counts for the first 10 minutes and 

one minute counts for the following 110 minutes. 
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Figure 6: The mean (± 2 SE, n = 10) number of grains moved during a two hour entrainment 

period across a 2400 cm2 area for loose and water-worked surfaces after six hours of low 

velocity flow with crayfish (crayfish) and without crayfish (control). a) 11–16 mm surfaces 

and b) 16–22 mm surfaces. Significant differences are labelled with a p value. 

 


