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Sound water policy and management rests on sound hydrometeorological and eco-
logical data. Conversely, unrepresentative, poorly collected, or erroneously archived
data introduce uncertainty regarding the magnitude, rate, and direction of environ-
mental change, in addition to undermining confidence in decision-making pro-
cesses. Unfortunately, data biases and errors can enter the information flow at
various stages, starting with site selection, instrumentation, sampling/measurement
procedures, postprocessing and ending with archiving systems. Techniques such as
visual inspection of raw data, graphical representation, and comparison between
sites, outlier, and trend detection, and referral to metadata can all help uncover spu-
rious data. Tell-tale signs of ambiguous and/or anomalous data are highlighted
using 12 carefully chosen cases drawn mainly from hydrology (‘the dirty dozen’).
These include evidence of changes in site or local conditions (due to land manage-
ment, river regulation, or urbanization); modifications to instrumentation or incon-
sistent observer behavior; mismatched or misrepresentative sampling in space and
time; treatment of missing values, postprocessing and data storage errors. Also for
raising awareness of pitfalls, recommendations are provided for uncovering lapses
in data quality after the information has been gathered. It is noted that error detec-
tion and attribution are more problematic for very large data sets, where observation
networks are automated, or when various information sources have been combined.
In these cases, more holistic indicators of data integrity are needed that reflect the
overall information life-cycle and application(s) of the hydrological data. © 2017 The
Authors. WIREs Water published by Wiley Periodicals, Inc.
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Overview

INTRODUCTION

High—quality hydrometeorological measurement
contributes to high-quality policies and man-
agement of natural resources. Examples of data sensi-
tive  (hydro-) decisions include: compliance
monitoring for environmental regulation; water
resource allocation between riparian states; planning,
design and investment in long-lived water infrastruc-
ture; post-project evaluation; safety and performance
reviews of critical infrastructure. All such activities
rely on high-integrity data collection and archiving
processes. Conversely, poor measurement and infor-
mation management practices can seriously under-
mine confidence in data.’

International bodies such as the World Meteor-
ological Organisation provide detailed guidelines on
best measurement practices, beginning with how to
choose a site for a meteorological station, followed
by protocols for site maintenance and instrument
use.” Likewise, seminal texts such as Streamflow
Measurement® and Hydrology in Practice® explain
the strengths and weaknesses of different types of
equipment for measuring water balance terms. These
points of reference are intended to avoid erroneous
practices before they occur; there is surprisingly little
advice on how to discern lapses in sound practice
after the information has been gathered. Of course,
there are quality assurance systems to protect the
veracity of data holdings in major collections such as
the UK National River Flow Archive (NRFA).> But
even these systems are fallible—erroneous entries can
still slip through automated checking procedures
when data values lie within plausible ranges.

This overview exposes some common data
recording and handling errors, to explain how they
might arise and be detected. We refer to our collec-
tion of ‘rogue’ data as The Dirty Dozen. This is in
homage to the classic 1967 film by the same name in
which a band of US Army convicts are brought
together to achieve an honorable but near-impossible
military objective. Similarly, by bringing together a
portfolio of suspect data we are aiming for a positive
outcome of raised awareness among researchers and
practitioners. Although we draw our exhibits largely
from observed data and personal experience, some of
the same pitfalls might apply to modeled informa-
tion. Likewise, while our case studies are mainly
based on hydrological data the issues raised are rele-
vant to related disciplines of ecology, meteorology,
and water quality.

The order of our dirty dozen follows a typical
information flow. We begin with examples of artifi-
cial influences on monitoring sites (#1-#4), then
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cover equipment changes (#5 and #6), quirks of sam-
pling and observer bias (#7-#9), interpretation of
outliers (#10 and #11), and techniques for infilling
missing data (#12). We then add examples of errors
that can occur at postprocessing and archiving
stages, along with recommendations for detecting
these kinds of erroneous values. Some supporting
data are provided as Appendix S1, Supporting Infor-
mation so readers can examine the same data for
themselves. It is our intention that the dirty dozen(s)
assembled in this paper will provide a basis for prac-
tical exercises and expose some of the tell-tale signs
when things go wrong with hydrometric data.

EXHIBIT #1: CHANGING SITE
LOCATION AND THE VALUE OF
METADATA

Lengthy hydrometeorological records are essential
for understanding climate variability and change,
detecting emergent trends and contextualizing
extreme weather events. To be fit for purpose, these
data need to be homogeneous (i.e., collected in con-
sistent ways and places) so that variability is only
caused by changes in climate rather than by artificial
influences such as station moves. Homogeneity may
be tested by (1) identifying break-points in single
series (absolute homogeneity)®; or (2) comparing
records from neighboring stations (relative homoge-
neity).” In both cases, metadata are invaluable for
confirming detected breaks and for highlighting ques-
tionable parts of data that might elude statistical
tests. The value of metadata increases with the age of
the record because the earlier the data, the smaller
the number of stations for implementing relative
homogenization tests.

For example, absolute and relative homogeniza-
tion methods were applied alongside metadata to
build a quality assured, long-term rainfall network
for the Island of Ireland.” One part of that record for
Malin Head (MH) illustrates how station moves (and
other factors) can influence trends identified in data
and the importance of metadata in building confi-
dence in adjusted series. This station was used in an
earlier analysis of trends that claimed a large increase
in annual rainfall totals®. However, metadata
(Supplementary Information page #1) indicate:
changes in the time and frequency of readings
(throughout the record, but particularly after 1950
with the onset of hourly measurements); a move of
the station from a cliff top at 230 ft (70 m) to a loca-
tion at 20 ft (6 m) above sea level (in 1921); opening
of a new station (same elevation) in 1955. Detected

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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breaks in the annual rainfall series were consistent
with the station relocation in 1921 and changes in
the time of observations in the 1950s. This evidence
was used to guide data homogenization—that is, cor-
rection for gauge under-catch during decades with
less frequent measurement and more exposed site
conditions.”

A significant increasing trend is evident in the
prehomogenized annual rainfall series (Figure 1(a)).
However, posthomogenization, the gradient for the
entire series (1890-2010) is only a quarter of that for
the un-corrected record. Figure 1(b) shows a double
mass plot which compares the cumulative sums of
annual rainfall for the corrected MH annual series
with Derry (the nearest long-running neighboring sta-
tion). The break-points and cumulative departure of
the MH homogenized record from Derry (the 1:1 line)
are smaller than those for the MH original record.

Recommendation: Use metadata to check the conti-
nuity of site location and environs; use techniques
such as linear regression or Pettitt’s test for break-
points to expose trends and abrupt changes respec-
tively that may be due to undocumented changes
in site properties.

EXHIBIT #2: ARTIFICIAL INFLUENCE
ON RECORDS (ARTERIAL DRAINAGE)

Agricultural productivity is greatly reduced where
there is persistent waterlogging and flooding. In an
effort to combat this problem, arterial drainage
schemes involving channel deepening and widening

Detecting reconciling hydrological data biases and errors

may be undertaken to improve flow conveyance.
Field drains might also be installed to drain the land.
Newly dredged river channels have a greater capacity
to receive additional water from previously water-
logged soils. While arterial drainage has economic
advantages, it can introduce hydrological discontinu-
ities to river flow records.

For example, a break point in the measured
flows of the River Boyne in east Ireland was detected
around the 1970s (Figure 2) (Appendix S1 page #2).
Early studies linked this abrupt change in regime to
increased precipitation caused by a shift in the North
Atlantic Oscillation to a predominantly positive
phase.'® Subsequent research’ attributes the change
to an extensive arterial drainage scheme that took
place over the period 1969-1986. Between this pre-
and postdrainage period observed flow volumes
increased by approximately 30%. Hydrological mod-
eling was used to simulate flows in the Boyne catch-
ment as if in a natural state (i.e., with no arterial
drainage but with observed climate variability). The
results showed that modeled and observed flows did
not match after the change point so increased precipi-
tation does not fully account for the regime change.
It was deduced that change in the Boyne must, there-
fore, be driven by a change within the catchment—
most likely arterial drainage.

This case demonstrates how human modifica-
tion to river channels and drainage properties can
have a substantial impact on river flow. Such artifi-
cial changes can be misinterpreted as a natural conse-
quence of, for example, an intensification of the
hydrological cycle due to climate change. The process
of setting up multiple hypotheses and systematically
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FIGURE 1 | (a) Comparison of the original (red line) and posthomogenized (blue line) annual rainfall record for MH, Ireland. Also shown are
the regression equations for the linear trend in each series. (b) Double mass plots for original and homogenized annual precipitation series at MH

compared with a nearby station in Derry.
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FIGURE 2 | Observed (blue) and modeled (red) annual mean flow
for the River Boyne catchment 1952-2009 (Office of Public Works
station number 07012). The gray shaded area represents the years in
which arterial drainage took place (1969-1986). Dashed horizontal
lines are median observed and modeled flows in pre- and
postdrainage periods. The black vertical line is the change point in
observed flow in 1978, detected by Pettitt's test (Reprinted with
permission from Ref 9).

testing!" the most likely cause(s) of a detected change
(i.e., attribution) is fundamental in developing appro-
priate management responses and long-term adapta-
tion strategies. Detection only studies can be of
limited use for planning and could even lead to mal-
adaptation.

Recommendation: Keep an open-mind about the
cause(s) of hydrological change and set up analytical
frameworks that can test multiple working hypoth-
eses, including the effects of both anthropogenic and
natural drivers of change.

EXHIBIT #3: ARTIFICIAL INFLUENCE
ON RECORDS (REGULATED RIVERS)

The construction and operation of reservoirs can
substantially impact gauged river flows'* (and other
quantities such as water temperature'?), predomi-
nantly through the introduction of compensation
flows,'* the suppression of flood maxima and/or the
timing and magnitude of releases. One such time
series in the UK NRFA is the Shell Brook in southern
England. This gauging station began recording river
flows in 1971 and these early data reflect the natural
flow regime. In 1978, Ardingly reservoir was con-
structed immediately upstream of the gauging
station.

The post-1978 river flow record is clearly influ-
enced by the reservoir, with sustained periods of sim-
ilar flows and abrupt step changes (as in 20035;
Figure 3a). These anomalous patterns predominantly
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impact the drier half of each water year (April to
September), although there are some years in which
all flow data are affected. The sustained periods of
both low flows and moderate flows are particularly
apparent when comparing the pre- and postreservoir
flow duration curves (Figure 3(b)) and flow quantiles
(Figure 3(c)). Adjustments to reservoir operations have
also introduced substantial interannual variability.

In this case, simply plotting the data should
highlight the impact on flows. However, reservoir
influence can be more subtle, for example, the trun-
cation of low flows in summer. Such effects are more
difficult to detect, although a flow duration curve
(e.g., Figure 3(b)) can help to highlight deviations
from the expected distribution of river flows in a nat-
ural series. Where modeling approaches can generate
naturalized river flow data, a range of ecologically
relevant indicators can be calculated to summarize
changes in seasonal flow regime, hydrological
extremes and variability (e.g., Ref 15).

Recommendation: Plot bydrographs and search met-
adata to identify more obvious erroneous river flow
data; plot flow duration curves and calculate flow
quantiles to quantify the influence or to highlight
more subtle impacts.

EXHIBIT #4: ARTIFICIAL INFLUENCE
ON RECORDS (URBAN HEAT ISLAND)

Near surface air temperatures are influenced by
regional- and local-scale energy balances. In mid-lati-
tudes, for example, summer anticyclones generally
elevate air temperatures by synoptic-scale subsidence
and by diabatic warming through amplified surface
heat fluxes. The latter can be highly sensitive to spa-
tial variations in the physical properties of the under-
lying land cover which modulate surface energy
fluxes.'® Nonhomogeneity can emerge in temperature
records at fixed sampling locations if these site-
specific properties change in time. This can be prob-
lematic for the interpretation of trends in long-term
temperature records. For instance, without detailed
interrogation, it can be difficult to separate the
impact of global-scale anthropogenic warming on
temperature records, from local processes driven by
land cover modification (e.g., Ref 17). This attribu-
tion uncertainty extends to associated water balance
terms such as evapotranspiration.'®

Urbanization is known to affect air temperature
records, as the surface properties of cities modify
energy fluxes in ways that strongly favor nocturnal

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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FIGURE 3 | Pre- and postreservoir data for Shell Brook, UK (NRFA 41024): (a) daily river flow hydrographs in 1972 and 2005; (b) flow
duration curves for 1971-1977 and 1978-2015; (c) 5th, 50th, and 95th flow quantiles for the same periods as (b).

warming.'? Sampling locations experiencing urbani-
zation over time may, therefore, contribute to a
warm bias in the study of larger-scale temperature
trends.”’ An assessment of data collected by the US
Historical Climatology Network, found much greater
20th Century warming for urban stations relative to
their rural counterparts, particularly for minimum air
temperatures.”! Figure 4(a) demonstrates this ten-
dency for two stations separated by only a few hun-
dred kilometers, with the urban site experiencing
more than twice the rate of rural warming.

Where such localized heating effects are
detected it may be desirable to exclude the sample
location from the study. However, removal of the
artificial warming signal is also possible, for example,
by homogenization techniques** (see Exhibit #1), or
via methods that explicitly identify and adjust urban
records to yield trends consistent with rural neigh-
bors.”* Satellite observations of night lights (Figure 4(b))
can be used to independently discriminate between rural
and urban sites.”!

Recommendation: Use independent indicators of the
extent of urban development (such as maps of noc-
turnal light) to identify surface air temperature
records that may be affected by urbanization; apply

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.

urban-rural pairing procedures to correct localized
warming trends at urban sites.

EXHIBIT #5: CHANGING
INSTRUMENTS

There are many ways of collecting river flow data.
Fixed gauging stations such as weirs and flumes aim
to stabilize the relationship (rating) between flow
depth and volume to enable more accurate measure-
ment of discharge. Ultrasonic gauges and electromag-
netic gauges measure velocity using acoustic pulses
and magnetic fields, respectively. Structures and
equipment at a gauging site may be installed, then
changed or upgraded in time. For example, a
velocity-area station may be superseded by a weir,
which may in turn have ultrasonic equipment
installed if a stable relationship between water level
and flow cannot be achieved. Weirs can alter the
level of the river significantly, and may affect only
certain aspects of the flow regime. For example, in
the case of the Harper’s Brook (Figure 5), only the
annual maximum flows appear to be affected. Like
all field equipment, electromagnetic gauges suffer
from deterioration over time which introduces errors
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to the flow data (e.g., due to degrading insulation of
detecting electrodes, or siltation of the weir cross-
section).

When a gauging station is being installed or
modified, data are generally not recorded leading to

(a)
3 T T
Urban monthly === Trend: 2.68°C century~!
— Rural monthly ~ w== Trend: 1.20°C century™’'
2 B
>2
T =
ES 1
S«
S 2
03
32 0
©
S b
20
§-
O
S
-2

200 Kilometers
J

e High

R L ow

FIGURE 4 | (a) Unadjusted monthly mean minimum temperatures
smoothed with 12-month running mean at urban (USHCN ID: 166664)
and rural (USHCN ID: 168163) weather stations. (b) The locations of
stations in A are shown on a map of night time lights generated from
the Defence Meteorological Satellite Program’s Operational Linescan
System (http://ngdc.noaa.gov/eog/). The lower panel shows the loca-
tions in detail, with example stations marked with a white cross. The
urban station is situated in the bright area of New Orleans.
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gaps in the time series (see Exhibit #12). Weirs and
electromagnetic gauges require substantial building
works and the disruption to the flow in this period is
significant. However, where ultrasonic gauges are fit-
ted, an overlap period may be used to calibrate the
instruments. In the majority of cases, installation of a
weir or alterations to it are accounted for by taking
spot gaugings of river velocity and cross-sectional
area, and altering the rating curve (which defines the
relationship between the stage and the discharge).
Despite this, testing can reveal step changes and/or
false trends as a result of gauging alterations and/or
gaps in records.”*

For example, metadata for Harper’s Brook at
Old Mill Bridge, central England shows that the rec-
ord began with a velocity area station measuring the
natural channel, until a compound crump weir was
built in 1965 (Figure 5). A simple linear regression fit
to the annual maximum (AMAX) flow series reveals
a substantial trend, whereby the AMAX values
appear to increase by 0.5 m’/s per decade. Plotting
mean values for the data before and after the installa-
tion of the compound crump weir highlights the
effect of the structure on the high flows in this river.
The Pettitt statistical change point test also detects
the year 1965. Even so, the increase in AMAX could
still be partly explained by multi-decadal climate var-
iability leading to a flood-rich period in the later por-
tion of the record.”

Recommendation: Use metadata to check the conti-
nuity of instrumentation at a site; use the Pettitt test
to expose abrupt changes that may be due to undo-
cumented changes in equipment at the site.

25
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@ 15
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FIGURE 5 | AMAX series for the Harper's Brook at Old Mill
Bridge, UK (NRFA 32003). A compound crump profile weir was
installed in 1965. The black dots show the linear trend for the whole
record, with the equation given in the top right corner. Horizontal blue
and red lines show the AMAX mean of the records pre- and post-
1965, respectively.
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EXHIBIT #6: CHANGES IN GAUGING
STATION DATUM

Measurements of stage, or water surface elevation
(alternatively referred to as the gauge height), are
generally made above an established datum.”® The
zero elevation point is often located in the ground
beneath the riverbed. Ideally, the datum should be
fixed over time, such that there is a consistent refer-
ence point for the entire record. However, sometimes
the datum is changed, for example, following degra-
dation of the riverbed. Unfortunately, it is estimated
that between a third and half of all US Geological
Survey (USGS) stream gauges have had a change of
datum or major change of location during their
period of record (Kolva, personnal communication).
Changing the datum alters the gauge height
that is referenced for a given water surface elevation.
For example, at the Comite River near Comite
(Figure 6), the datum was lowered by 2 ft (0.6 m) on
October 1, 1996 (note the imperial units that are
routinely used in the United States). Hence, a stage of
2 ft in September 1996 is equivalent to a stage of 4 ft
(1.2 m) in October 1996 (for the same water surface
elevation). Such changes can be detected relatively
easily in historical time series when a large datum
shift is applied (Figure 6), but not necessarily when
the change is small or gradual, for example, due to
ground subsidence. Note also that switches of units
such as between imperial (in Figures 6 and 7) and
metric can be problematic too. Shifts in the stage-
discharge relation may further be indicative of natu-
ral geomorphic processes at the site (e.g. changes in
riverbed elevation or channel width due to accretion
or erosion).”® Information about changes in datum
can usually be found in the USGS gauging station
water-year summary report (see http://waterdata.
usgs.gov/LA/nwis/wys_rpt/?site_no=07378000&

agency_cd=USGS).

The issue of datum correction is particularly
important for time series analyses of stage records’
or of river channel geometry.>® When computing
changes in the frequency of flood events above flood
stage, for example, if the measurements are not refer-
enced to a fixed datum, a spurious trend in flood fre-
quency could be inferred. Progressive changes in the
datum may also contribute to instability in rating
relationships used to estimate discharge from river

stage.’!

Recommendation: Plot and visually inspect the
stage-discharge relationship and stage time series
before conducting any statistical analyses; note any

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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abrupt shifts in stage that may reveal undocumented
changes in datum.

EXHIBIT #7: OBSERVER
MEASUREMENT BIASES

Benford’s Law (BL), also known as the first digit law,
recognizes that in many collections of numbers, the
leading digit is most often 1 (~30% of the time) and
least often 9 (~5% of the time). Such differences in
frequency are greater than would be expected to
occur by chance. BL holds for a wide variety of soci-
oeconomic and natural science data sets.>” Knowl-
edge of this law can be used as a diagnostic tool. For
instance, departures from expected high frequencies
of small leading digits are routinely used to pick up
rounding errors or fabricated data (e.g., in tax
returns).

BL can also be used to detect observer bias or
suspect values in hydrometeorological data.>®> Some
biases may be unintentional. For example, weather
observers tend to favor daily precipitation totals that
are divisible by 5 or 10. One evaluation of the US
Cooperative Observer Program network found that
97% of stations with complete or near complete
records exhibit this 5/10 bias.** Observers also tend
to under-report the frequency of days with light pre-
cipitation, that is, daily totals at the lower limit of
measurement—which in the United States is often
close to 2.54 mm (or 0.1 inches). Both biases were
linked to the precision and consistency of use of pre-
cipitation measuring sticks which have large, labeled
tick marks every 0.10 inches, large, unlabeled tick
marks every 0.05 inches, and small, unlabeled tick
marks every 0.01 inches.>* Both number bias and
trace wet-day under-reporting skew the overall fre-
quency distribution of precipitation amounts in ways
that can affect estimation of extreme values.

Another bias occurs when manual weather
observations are not made on a weekend or over a
holiday period. Instead, any precipitation falling dur-
ing the unobserved days is assigned to the first day of
return to business, which is typically a Monday or
Tuesday. Average precipitation totals on these days
tend to be higher than those estimated for days on
the weekend. Such under-reporting of rainfall on
Sunday has been shown for meteorological stations
in Australia,> the United Kingdom,*® and United
States.>*

To illustrate these points, observer number
preference and weekend under-reporting biases are
assessed using daily precipitation data for Dushanbe,
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FIGURE 6 | Before and after correcting for change in datum. Stage records for the Comite river near Comite, Louisiana (USGS site number
07378000) are publicly available on the USGS National Water Information Service website.?’” The online Water Year Report states 'From Oct. 1,
1978 to Sept. 30, 1996, at current datum. From Oct. 1, 1996 to Sept. 30, 2001, at datum 2.00 ft lower." Therefore, the stage time series were
adjusted to the same datum by subtracting two feet from the measured stage between 1 October 1996 and 30 September 2001 (i.e., water years
1997-2001). The measurements made during this period are shown as red circles, before (a) and after (b) datum correction.

Tajikistan (Figure 7) (Appendix S1 page #7). At this
site, observer(s) have a preference for 3.0 and 6.0
inch daily rainfall totals as evidenced by unexpect-
edly high frequencies of these amounts during the
period 1958-1967. In fact, the value 3.0 occurs 14%
more frequently than expected by BL. More striking
is the lack of any values either side of the 3.0 and 6.0
inch amounts which further raises doubt about the
credibility of these entries. Mean intensities are nota-
bly higher on Mondays/Tuesdays than on Sundays
suggesting that some weekend rainfall has been car-
ried over into weekday totals too.

Recommendation: Use histograms of daily precipita-
tion amounts to reveal under-reporting of light rain-
fall and/or observer number bias; mean daily
amounts plotted by day of week can expose unre-
corded aggregation of multi-day precipitation.

8 of 19

EXHIBIT #8: SAMPLING BIAS IN TIME

Spot sampling is widely used to monitor environmen-
tal variables in a noncontinuous way, perhaps to save
time and/or resources. Sampling may be fixed (sys-
tematic) or random (without any temporal or spatial
structure) according to the purpose of the data collec-
tion. Ideally, the sampling frequency, time, and loca-
tion are appropriate to the behavior of the variable(s)
under surveillance. Slowly varying phenomena such
as groundwater levels may be adequately sampled
once per month at a handful of sites to represent
behavior across an aquifer. Conversely, rapidly vary-
ing variables like suspended sediment concentrations
(see Exhibits #10 and #11) have to be sampled at
hourly or subhourly intervals to accurately estimate
the amount of material transported. If the sampling
frequency is not appropriate, biased estimates may
arise.

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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FIGURE 7 | Evidence of observer (a, b) value and (c) day of week biases in daily precipitation amounts recorded for Dushanbe, Tajikistan.

Data source: NOAA Global Summary of the Day.

For example, it has been shown that the 98th
percentile water temperature (used for compliance
monitoring in the EU Water Framework Directive,
WED) can be 1°C cooler if based on monthly values
rather than the ‘true’ values from hourly sampling.®”
As well as the frequency, the time of sampling is also
critical for variables like water and air temperatures
which have strong diurnal and seasonal cycles.>® Pro-
vided that samples are collected at fixed points in
these cycles, repeat measurements are comparable
with each other. Figure 8 provides an example where
systematic spot sampling was not applied to water
temperature monitoring at a site on the River Dove,
UK (Appendix S1, page #8).

Although the water temperature measurements
in Figure 8 were made by trained field staff, follow-
ing standard procedures, with well-maintained equip-
ment and at a fixed location, the time of day of
taking the monthly samples was not consistent. Spot

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.

samples in the mid-1990s were taken at around
09:00 h, but this drifted to about 13:00 h by the
2010s. Given that afternoon water temperatures are
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FIGURE 8 | Time of day when spot samples of river water
temperatures were taken at Glutton, River Dove, Derbyshire, UK
(Reprinted with permission from Ref 39).
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typically higher than those in the morning, the
change in sampling time alone has introduced a
warming bias of ~1.1°C over the course of the rec-
ord. Even small discrepancies in water temperature
are significant because they can lead to a misclassifi-
cation of a river’s health under the terms of the
WFD, or exaggerate the pace of warming seen in UK
freshwaters.*

Recommendation: Plot the time of spot sampling to
check for hidden biases in the collection of data, par-
ticularly for series with strong cyclical variations.

EXHIBIT #9: MISMATCHED SAMPLING
IN SPACE AND TIME

Continuous river discharge records are often used to
derive ‘flow statistics’ to match with other environ-
mental indicators such as benthic invertebrate
data.*""** High-resolution flow series may yield point
discharge at a predetermined time and date through
to daily, seasonal, or annual averages and long-term
flow duration statistics (e.g., Q95—the flow that is
exceeded 95% of the time). In contrast, most ecologi-
cal series represent discrete sampling events, typically
collected on a quasi-annual or seasonal basis
(Figure 9). Hence, timing of eco-sampling may vary
from one year to another with, for example, collec-
tion of an ‘autumn’ sample anywhere between
1 September and 30 November. When assessing
potential influences of antecedent flow conditions on
instream communities it is clearly essential that dis-
charge and ecological series overlap to ensure that
the hydrological conditions experienced by instream
communities are properly reflected. Two primary
sources of error may still arise after quality assurance
processes have been undertaken: (1) sites where dis-
charge and ecological series were derived may not be
co-located and (2) the sampling time-frame of dis-
crete ecological series may miss potentially important
hydrological events driving community structure and
change. A third potential source of error may occur
if discharge statistics drawn from the UK hydrologi-
cal year (1 October-30 September) are matched with
ecological samples that are collated on a seasonal
basis (such as autumn, which spans 1 September to
30 November).

One study examined 291  long-term
(>20 years) paired river flow and autumn season
macroinvertebrate community records (>10 years)
for sites across England and Wales.** Screening of
the series resulted in 208 (71%) of the sites being
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removed due to missing values or because sampling
points were not coincident. Removal of some sites
was necessary because of flow addition or loss asso-
ciated with impoundment, abstraction, or con-
fluences occurring between the gauge and bio-
monitoring points. A common source of error was
due to missing hydrological events because of the
mismatch between the hydrological year (October to
September) and seasons used to analyze discrete
macroinvertebrate samples (such as autumn being
September to November).

Errors can arise when (1) an invertebrate sam-
ple is collected toward the end of a season with
marked wvariability in river discharge that is not
reflected in the seasonal average of the chosen flow
metric (points #3 and #4 in Figure 9) or (2) discharge
data from the period after the ecological survey is
included in the seasonal average flow metric if the
‘hydrological year’ is not corrected to coincide with
ecological sampling window. Most ecohydrological
statistics potentially omit some hydrological events
due to the mismatch between the continuous hydro-
logical and discrete ecological series. It is, therefore,
probably not surprising that the most statistically sig-
nificant models of river flow-ecology relationships
have been developed for less hydrologically variable
groundwater dominated systems as opposed to flash-
ier surface runoff dominated systems.
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FIGURE 9 | Schematic of continuous river discharge measurement
with a schedule of discrete biological surveys (numbered 1-4) within
an autumn sampling season. Eco-sample 1 is collected under steady/
low flow conditions; 2 during a period of catchment rewetting; 3 near
to and 4 following the peak discharge. A denotes the start of the
hydrological year in the UK.
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Recommendation:  Plot  hydrological  time-series
alongside dates for discrete ecological samples to
confirm that sampling periods are coincident; exam-
ine series for the presence of potentially significant
discharge events prior to collection of ecological sam-
ples (even those falling in another season).

EXHIBIT #10: SPURIOUS OR CURIOUS
SPIKES

Modern instruments deployed in rivers can provide
high-frequency (<1 minute resolution) data, creating
new opportunities for research but also requiring
careful quality control. For example, Acoustic Dop-
pler Velocimetry can record flow speeds at >100 Hz
but it is widely acknowledged that time series require
filtering to remove spurious values, that are an inher-
ent and unavoidable product of the technology.
Standard protocols exist for identifying spikes and

(a)
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Turbidity (NTU)

Detecting reconciling hydrological data biases and errors

outliers, which usually involve removing data that
fall outside upper and lower thresholds defined rela-
tive to the record mean.***

Similarly, high-frequency turbidity records can
be subject to considerable noise and other limita-
tions, not least when calibrating turbidity and sus-
pended sediment concentration (SSC) records.*®*”
Noise can be caused by electronic signal errors, but
these tend to be small relative to mean values and
normally within the error range of the device
(Figure 10). Larger spikes in data are common and
can be caused by dirty optics, particularly biofouling
that can be detected by sudden step changes or more
gradual, but systematic shifts in turbidity. Wipers on
sensors can remove small contaminants but larger
debris must be manually removed.

Large spikes can also be caused by biological
activity.*®* For instance, Figure 10, shows spikes in
turbidity due to the activity of Signal Crayfish (Paci-
fastacus leniusculus) in both laboratory and field

0
0.0 0.5 1.0 1.5 2.0

(b)
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Turbidity (NTU)
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FIGURE 10 | (a) 10-s resolution turbidity record (gray) with a 1-min moving average (black) over 10-h in a still-water laboratory aquaria with
silty substrate and one Signal Crayfish left for 1-h near the beginning of the experiment, after which time it was removed. Note that spikes occur
only when the crayfish is present, with gradually decreasing turbidity after crayfish removal. (b) 5-min resolution turbidity record for a tributary of
the River Nene, UK, colonized by crayfish (black) which records a signal with more frequent spikes during night hours (labels are at midnight) and
a strong diurnal structure in the mean turbidity. During this period other instruments confirmed that there were no changes in hydraulics capable
of driving these turbidity fluctuations. It was concluded that individual spikes reflect fine sediment entrainment caused by foraging, burrowing or
fighting events, which increase at night because crayfish are nocturnal. The diurnal pattern reflects the net effect of this enhanced night time
activity on mean turbidity. A second turbidity sensor (red line), identical to that in the river, was deployed in an open-top aquarium filled with
clean water and situated on the river bed adjacent to the first. The flat trace confirms that the signal from the river is not an instrument artifact,
driven by diurnal variations in light or temperature that can affect the optical measurement of turbidity in some sensors. The small spikes that do
occur, fall within the manufacturers stated error, are randomly distributed around the mean and do not show any temporal structure, which

suggests that they reflect instrument noise.

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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settings, compared with controls where crayfish were
excluded. In still-water with no crayfish, spikes are
small, so most likely associated with electronic signal
errors. In contrast, records with flowing water and
crayfish are subject to much larger spikes, which
reflect the impact of sediment disturbance by cray-
fish. Diurnal variations in spikiness are indicative of
biological activity. One study reported that spikes
are three times more likely and 20% higher when
crayfish are active at night, than during daylight.’®

Hence, high-resolution turbidity data from field
deployment needs careful assessment. Systematic
changes, such as cumulative increases in turbidity, or
step-changes should be removed and are likely the
result of sensor fouling. However, remaining spikes
exceeding sensor error terms are likely to be associ-
ated with biological activity or turbulent events,
representing real phenomena.

Recommendation: Understand potential sources of
data spikiness that are inherent in some measurement
techniques but do not remove spikes and outliers
uncritically; cross-check unexpectedly high data
values against independent evidence and consider all
potential causes of data excursions - they may reveal
something unexpected and important.

EXHIBIT #11: MEANINGLESS MEANS

Simple measures of central tendency—such as aver-
age annual river flow or mean winter monthly
rainfall—are routinely used to characterize hydrome-
teorological data. Such metrics are meaningful when
the properties in question exhibit relatively consistent
variability (i.e., when there are slow variations, with
few extreme departures from typical levels). This
applies not only to mean values over any particular
time interval, but also to the nature and extent of
any variability over diurnal, monthly, seasonal, or
annual scales.

Sometimes, however, time series do not exhibit
gradual or at least consistent change; instead, there
may be extreme and apparently unpredictable varia-
bility at multiple timescales. For example, SSC may
exhibit abrupt spikes above background levels, rather
than gradual shifts. These effects can be caused by
episodic sediment supply from biological activity
(e.g., Exhibit #10), or due to bank collapse, flushing
associated with rainstorms or meltwater release, or
variable entrainment patterns on floodplains. This
makes determining a representative value of SSC dif-
ficult, because actual values tend to be either very
low background readings, or volatile quantities
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associated with transient events. In other words, the
data are multimodally distributed.

Figure 11 shows discharge and SSC time series
for the proglacial river of the Finsterwalder Glacier
in Svalbard, Arctic Norway.’! Meltwater-fed systems
such as these are useful exemplars of hydrological
processes because they exhibit rapid change over rel-
atively short timescales. In this case, it is evident that
SSC values are dominated by two brief episodes (cor-
responding to flushing events) and a mean value that
is not representative of the bimodal distribution of
concentrations. Furthermore, attempts to quantify
variability around the putative mean SSC are unrelia-
ble without explicit reference to a specific timescale—
the characteristic diurnal range in this particular
example is much smaller than the seasonal range.

However, because of the need to statistically
characterize the system, the question remains: what is
a representative suspended sediment transport value
for—in this case—the Finsterwalder proglacial river?
This question is best addressed through temporal and
spatial aggregation. Here, the time integral of Sus-
pended Sediment Load (SSL, the product of SSC and
discharge; in units of mass) better quantifies the total
transport for the duration of the time series, and
forms a reliable basis for calculating sediment flux
(in units of mass per unit area per unit time).

Recommendation: Aggregate time- and space-scales
as much as possible when describing the ‘average’
condition of rapidly-changing variables with tran-
sient, extreme values when it is useful/ important to
define mean conditions.

EXHIBIT #12: INFILLED DATA GAPS

Data may be missing for various reasons, including
equipment malfunctions or loss during transmission
and storage. Sometimes data are coded as missing
because they are of insufficient accuracy, precision or
reliability to be retained. Records may begin at differ-
ent times, be discontinuous, or end before the present
day. Individual variables may differ in their com-
pleteness even at the same site. Plotting data availa-
bility with time (Figure 12(a)) show the extent of
overlap between neighboring records that might be
bridged to create a composite series (as in Ref 52).
Information in the metadata may contain errors too.
For example, header information held in the NRFA
41009 record for gauge C incorrectly reported no
data between 1977 and 1998.

Infilling data gaps may be necessary to create
homogeneous hydrological series for assessment of

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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FIGURE 11 | (a), Discharge and SSC time series for the proglacial river of the Finsterwalder Glacier, Norway, showing two periods of very
high values compared to background levels (East and West are rivers draining the glacier margins, which coalesce downstream to form the Outlet
river); (b), The same data converted to SSL and integrated over time—a process that yields improved characterization of the sediment transport
regime compared with simple measures of central tendency and dispersion (the proximal flux is the sum of the East and West fluxes; the distal
flux is the outlet flux); (c), Histogram of the SSC showing the multimodal nature of the data.

long-term variability (see Exhibits #1 and #2),
extreme events or continuous series for running mod-
els. However, any infilling by interpolation or extrap-
olation relies upon assumptions that can introduce
artifacts and give an impression of false certainty.
For instance, the parameters of a statistical distribu-
tion can be estimated from a sub-set of the observa-
tions as in Figure 12b, but the observations do not
exactly conform to the log-normal curve selected.
Hence, using the log-normal for infilling would
impose some of this assumed shape on the distribu-
tion. Critically, if gap filling is needed, beware of
using the mean (of the rest of the record or neighbor-
ing stations) as this will suppress variability and
underestimate extremes. There are three wvalid
alternatives:

(1) Time substitution involves taking informa-
tion from other dates assuming stationarity of the

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.

observations. For example, with flow data from
gauge C fitted to a log-normal distribution, the miss-
ing data for 1976-1982 can be resampled from the
same distribution. Alternatively, using the relation-
ship between the overlapping records of gauges
B and C for the period 1982-20135, the missing block
in gauge C for 1976-1982 could be estimated from
gauge B. Other sources of data, such as newspaper
archives or proxy records, can help to corroborate
infilled extreme events.>>

(2) Space substitution involves taking informa-
tion from equivalent sites. For flood frequency esti-
mation, ‘pooled’ analysis is common practice. For
example, this technique was used to create 1405
annual maxima flow values for the River Trent, UK
using approximately 50-year records.’*%’

(3) Physical principles can be used to predict
missing data. For instance, A and B flow toward
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FIGURE 12 | Gauged river flow records for the River Rother, UK. (a), Data completeness for the three gauges, with light blue illustrating
partial data; (b), Histogram of river flows for gauge C, fitted with a log-normal distribution (red); (c), Schematic of gauge locations and metadata.
Dark blue river reaches are measured by gauges A-B-C, light blue ones are not; numbers in brackets () are the NNRFA station codes; areas
represent the upstream catchment size, and x symbols indicate other gauges. Data source: UK National Flood River Archive (http://nrfa.ceh.ac.uk/)

C; this means that A and B are each hydrologically
linked to C, and all three are likely meteorologically
inter-related given their proximity (<10 km) (Figure 12
(¢)). Using rainfall-runoff models it would be possible
to estimate missing values at gauges A, B, or C and
any interrelationships between them. Missing records
can then be infilled with synthetic river flow records or
even reconstructed for times without river records using
historical weather data.’®>’

Recommendation: Filled data gaps contain assump-

tions not observations, so beware the techniques
used to create apparently complete records to avoid
(re)interpreting those assumptions.

DIRTY DOZEN II AND III:
POSTPROCESSING AND ARCHIVING
ERRORS

Space limitations mean that we have only scratched
the surface of the full range of biases and errors that

can occur in a hydrological information flow,
between site selection and eventual dissemination of
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data (Figure 13). Related disciplines, such as ecology
and water quality, would be subject to many of the
same uncertainties such as concerns about instrument
drift, fouling, or truncation settings, as well as about
equipment maintenance, calibration, and routine
updating of instrument logs/meta data to help inter-
pret outliers in data.

Table 1 lists other sources of uncertainty that
may be encountered by field hydrometry. Here, a
distinction is made between errors (E) that relate to
problems with instrumentation or measurement prac-
tices and biases (B) that are due to changing catch-
ment conditions (outside the control of the field
technician). Table 2 gives examples of errors that can
arise at the other end of the process at the point of
archiving, with indications of how they might be
detected. Ideally, instrument logs would be main-
tained and made available for open inspection. Such
checks might be feasible for individual sites, instru-
ments, or records but impracticable for very large
data sets—it is simply too labor intensive to visually
inspect all entries. Hence, these types of error can
present hidden dangers to users of ‘global’ sets

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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FIGURE 13 | An information-flow that begins by setting project
objectives and ends with data archiving, dissemination and use. Data
biases and errors can enter the information-flow at any point in
between.

compiled from multiple networks, with varying stan-
dards of data collection, types of instrumentation,
and quality assurance protocols (Figure 14).

Detecting reconciling hydrological data biases and errors

Although there is now a tendency toward
increased automation of environmental monitoring
and quality assurance, there is still high dependency
on manual techniques, not least for instrument cali-
bration or evaluation of unexpected results. As we
have shown, suspiciously high or low values are not
always wrong (see Exhibits #10 and #11). Moreover,
the power to detect outliers and change-points
depends on the choice of the statistical techniques
deployed.’® Such considerations underline the impor-
tance of metadata and other circumstantial evidence
(not least local knowledge) for ratifying hydrometer-
ological data.’® Once an issue is detected, the ques-
tion then arises as to how to handle the error?
Ideally, the archivist would set up processes to enable
capture of user-community feedback. On the other
hand, perhaps one of the conditions attached to the
freedom of data access should be a responsibility on
users to report errors.

We have focussed on individual records but the
representativeness of the observing network of stations
as a whole matters just as much (if not more). Bench-
mark networks such as the USGS Hydrologic Bench-
mark Network® and the UK Ref Hydrological
Network®' are comprised of catchments with near-
natural conditions and good-quality gauge records.
Unfortunately, such networks of reference stations are
under constant pressure to rationalize and demonstrate

TABLE 1 | Dirty Dozen II: Other Causes of Errors (E) and Biases (B) in Hydrometric Data

# Cause Effect
1 Signal errors in electromagnetic gauging Unexpected peaks in river flow
(E)
2 Aquatic weed growth or weed cutting (E) Higher or lower than expected water levels

Over-flowing rain gauges (E)

Over-topping and by-passing gauging
stations (E)

Ice jams and frozen equipment (E)

6 Silt enters the stilling well of a float-
based water-level gauge (E)

7 Road building (B)

8 Reservoir construction and filling (B)

9 Urban expansion (B)

10 Effluent returns and abstractions (B)

1 Sluice operations (B)

12 Subsidence of equipment due to

groundwater abstraction, mining,
urban development (B)

Underestimated heavy rainfall events
Truncated high flows

Constant, elevated or zero values returned
Truncated low flows

Avrtificial trend in high flows and siltation of
instruments

Temporary and/or unexpected reduction in flows
at downstream sites

Shorter time to peak and higher maximum
discharges

Higher or lower than expected minimum flows
Unexpected spikes in flow

Changes to gauge datum with ramifications for
stage, rating relationships and flood frequency
estimation

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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TABLE 2 | Dirty Dozen lll: Errors at the Point of Data Transmission and Archiving (see also Figure 14)

# Causes Detection
1 Missing days in leap years Fewer values than expected when sorted by date
2 Double entries of data More values than expected when sorted by date
3 Decimalization or not (e.g., tenths to whole Step change(s) in time series plot
millimeters of precipitation)
4 Fabricated data Comparison with neighboring stations; statistical
tests such as BL
5 Miscoded or changed units (e.g., inches to mm; Step change(s) in time series plot
Fahrenheit to Celsius)
Truncation and rounding errors Statistical tests such as BL
Inconsistent use of missing data codes Blocks of data with the same value (e.g., —999
then 198)
8 Suspect or erroneous data coded as zero Unrealistic occurrences of zero conditions
(e.g., river flow)
9 Data entry or key stroke error(s) for manually Values outside expected range (four sigma test);
digitized records comparison with neighboring sites
10 Miscoded or classified variable (e.g., relative Values outside expected range (four sigma test);
humidity stored as temperature or vice versa) comparison with neighboring sites
" Values outside calibration/rating curve range Truncated peak values
12 Regional variations in date (e.g., dd/mm/yy or End of file error messages or data misfeeds when

mm/dd/yy) and decimal (e.g., *," or ".) formats
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FIGURE 14 | Archiving errors in river flow records: Station a—missing data code (198) interpreted as actual flow data; Station b—rounding
of flows greater than 1 cubic meter per second (cumec) to whole integers; Station ¢ —decimalization change; and Station d—suspect low values
set to zero. Data sources: (a): FRIEND European Water Archive (EWA), Germany; (b): German Federal Institute of Hydrology (BfG), Germany
(including data acquired from the water authorities of the German Federal States); (c): Office of Public Works (OPW), Ireland; (d): Centre for
Hydrographic Studies (CEDEX), Spain.
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cost-benefits. Facilities such as the FRIEND European
Water Archive, the UK Acid Waters Monitoring Net-
work and the UK Environmental Change Network all
provide a basis for tracking long-term environmental
trends (e.g., Ref 24).

However, benchmark networks are also criti-
cal points of reference for cross-validating data.
Measures such as the Representative Catchment
Index and Catchment Utility Index show the extent
to which individual gauging station records are
amenable to regionalization or comparable with
other sites.®* Indicators of hydrometric data quality,
completeness, and provision also provide a basis
for stabilizing ‘fluctuating’ networks and setting
levels of service provision.®® Increasingly, the case is
being made for more holistic measures of data qual-
ity that reflect the overall information life-cycle and
utility of the data to users (Figure 13), rather than
a few conventional quality indictors (e.g., record
completeness).

CONCLUSIONS

Hydrological data biases and errors are a fact of
life but early detection and attribution can help to
minimize the risk of costly/poor/dangerous deci-
sions later on. Indeed, future work might catalog
instances where data errors and/or biases have
directly changed a management decision or led to a
different outcome. One notorious example from
space-engineering is the burn up of the Mars Cli-
mate Orbiter because different units were used by
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the constructors (imperial) and modelers (metric) of
the satellite’s thrusters. Just as systems engineers
have examined the causes of famous failures®* simi-
lar appraisals might be undertaken of the robust-
ness of, for example, local flood protection schemes
and national water policies to data biases and
errors.

We have illustrated a range of techniques but
the most dependable are: (1) visual inspection of raw
data; (2) simple line, bar, and scatter charts to dis-
play changes over time or to compare data from
neighboring sites; (3) basic outlier and trend diagnos-
tics; and (4) reference to high-quality metadata to aid
interpretation of unexpected values or abrupt
changes in data. Above all, it is necessary to have a
critical mind-set when interrogating any field data.
Such precautions are not only valid for hydrologists,
ecologists, and water quality specialists—they are just
as essential for other environmental and social sci-
ence disciplines.

During periods of austerity, conventional obser-
ving networks tend to be rationalized. With scarcer
resources there is likely to be growing reliance on
data gathered by automated systems, nonexperts
(‘citizen scientists’) or via the amalgamation of dispa-
rate information sources (‘big data’). As data sets
grow in size and complexity, users may become even
more distanced from the processes that produced
them—the real danger is that such data are deployed
uncritically or in good faith. Hence, the case for
building data literate communities has never been
stronger.

This paper was inspired by a capacity building program supported by the European Bank for Reconstruction
and Development. Data for Exhibits #3, #5 and #12 are freely available from the UK NRFA. Other public data
sources are acknowledged in Figure legends. Authors CP, KS, SH and SP are supported by the NERC-CEH
Water Resources Science Area. We thank Mark Szegner for graphical work. We are also grateful to the editors
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