362 research outputs found

    The influence of caffeine expectancies on sport, exercise and cognitive performance

    Get PDF
    Caffeine (CAF) is widely consumed across sport and exercise for its reputed ergogenic properties, including central nervous stimulation and enhanced muscular force development. However, expectancy and the related psychological permutations that are associated with oral CAF ingestion are generally not considered in most experimental designs and these could be important in understanding if/how CAF elicits an ergogenic effect. The present paper reviews 17 intervention studies across sport, exercise, and cognitive performance. All explore CAF expectancies, in conjunction with/without CAF pharmacology. Thirteen out of 17 studies indicated expectancy effects of varying magnitudes across a range of exercise tasks and cognitive skills inclusive off but not limited to; endurance capacity, weightlifting performance, simple reaction time and memory. Factors, such as motivation, belief, and habitual CAF consumption habits influenced the response. In many instances, these effects were comparable to CAF pharmacology. Given these findings and the lack of consistency in the experimental design, future research acknowledging factors, such as habitual CAF consumption habits, habituated expectations, and the importance of subjective post-hoc analysis will help to advance knowledge within this area.N/

    Ingestion of sodium bicarbonate (NaHCO3) following a fatiguing bout of exercise accelerates post-exercise acid-base balance recovery and improves subsequent high-intensity cycling time to exhaustion.

    Get PDF
    This study evaluated the ingestion of sodium bicarbonate (NaHCO3) on post-exercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23±2 years, height: 179±5 cm, body mass: 74±9 kg, peak mean minute power (WPEAK) 256±45 W, peak oxygen uptake (V̇O2PEAK) 46±8 ml.kg-1.min-1) performed a graded incremental exercise test, two familiarisation and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (TLIM1) at 100% WPEAK on two occasions (TLIM1 and TLIM2) interspersed by a 90 min passive recovery period. Using a double blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg-1 body mass sodium bicarbonate (NaHCO3) or a placebo (PLA) containing 0.1 g.kg-1 body mass sodium chloride (NaCl) mixed with 4 ml.kg-1 tap water and 1 ml.kg-1 orange squash. The mean differences between TLIM2 and TLIM1 was larger for PLA compared to NaHCO3 (-53±53 vs. -20±48 s; P=0.008, d=0.7, CI=-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO3. Blood lactate [BLa-] was similar between treatments post TLIM1, but greater for NaHCO3 post TLIM2 and 5 min post TLIM2. Ingestion of NaHCO3 induced marked increases (P<0.01) in both blood pH (+0.07±0.02, d=2.6, CI=1.2, 3.7) and bicarbonate ion concentration [HCO3-] (+6.8±1.6 mmo.l-1, d=3.4, CI=1.8, 4.7) compared to the PLA treatment, prior to TLIM2. It is likely both the acceleration of recovery and the marked increases of acid-base after TLIM1 contributed to greater TLIM2 performance compared to the PLA condition.The authors received no external funding for this research. Mr. Steven Rimmer received a small undergraduate research bursary from the University of Derby to fund his contribution to the study

    Physiologie appliquee, nutrition et metabolisme

    Get PDF
    This study examined whether expectancy of ergogenicity of a commonly used nutritional supplement (sodium bicarbonate; NaHCO3) influenced subsequent high-intensity cycling capacity. Eight recreationally active males (age, 21 ± 1 years; body mass, 75 ± 8 kg; height, 178 ± 4 cm; WPEAK = 205 ± 22 W) performed a graded incremental test to assess peak power output (WPEAK), one familiarisation trial and two experimental trials. Experimental trials consisted of cycling at 100% WPEAK to volitional exhaustion (TLIM) 60 min after ingesting either a placebo (PLA: 0.1 g·kg(-1) sodium chloride (NaCl), 4 mL·kg(-1) tap water, and 1 mL·kg(-1) squash) or a sham placebo (SHAM: 0.1 g·kg(-1) NaCl, 4 mL·kg(-1) carbonated water, and 1 mL·kg(-1) squash). SHAM aimed to replicate the previously reported symptoms of gut fullness (GF) and abdominal discomfort (AD) associated with NaHCO3 ingestion. Treatments were administered double blind and accompanied by written scripts designed to remain neutral (PLA) or induce expectancy of ergogenicity (SHAM). After SHAM mean TLIM increased by 9.5% compared to PLA (461 ± 148 s versus 421 ± 150 s; P = 0.048, d = 0.3). Ratings of GF and AD were mild but ~1 unit higher post-ingestion for SHAM. After 3 min TLIM overall ratings of perceived exertion were 1.4 ± 1.3 units lower for SHAM compared to PLA (P = 0.020, d = 0.6). There were no differences between treatments for blood lactate, blood glucose, or heart rate. In summary, ergogenicity after NaHCO3 ingestion may be influenced by expectancy, which mediates perception of effort during subsequent exercise. The observed ergogenicity with SHAM did not affect our measures of cardiorespiratory physiology or metabolic flux.University of Derby Departmental Teaching Budge

    Rate Response Assessment from Various Granular VRT Applicators

    Get PDF
    Variable-rate technology (VRT) adds complexity to application equipment, thereby confounding the assessment of applicator performance. The intent of this investigation was to assess the rate response of various VRT granular applicators: two spinner spreaders (A and B), and two pneumatic applicators (C and D). Variable-rate (VR) tests were conducted to quantify the rate response characteristics (delay and transition times) for the applicators. A sigmoidal function was used to model the rate response for five of the six tests. Applicator A exhibited a linear response during decreasing rate changes. Results indicated that only applicator B demonstrated consistent delay and transition times, enabling the use of a single “look-ahead” time for rate response time correction. Contouring of prescription maps increased the transition times for applicator D by enlarging the adjustment area between management zones. Rate changes were quicker for the two newer VR control systems, signifying advancement in hydraulic control valve technology. This research illustrates the need for standard testing protocols for VRT systems to help guide VRT software developers, equipment manufacturers, and end users

    Oral ingestion of deep ocean minerals increases high-intensity intermittent running capacity in soccer players after short-term post-exercise recovery: A double-blind, placebo-controlled crossover trial

    Get PDF
    This study examined whether deep ocean mineral (DOM) supplementation improved high-intensity intermittent running capacity after short-term recovery from an initial bout of prolonged high-intensity running in thermoneutral environmental conditions. Nine healthy recreational male soccer players (age: 22 ± 1 y; stature: 181 ± 5 cm; and body mass 80 ± 11 kg) completed a graded incremental test to ascertain peak oxygen uptake (V·O2PEAK), two familiarisation trials, and two experimental trials following a double-blind, repeated measures, crossover and counterbalanced design. All trials were separated by seven days and at ambient room temperature (i.e., 20 °C). During the 2 h recovery period after the initial ~60 min running at 75% V·O2PEAK, participants were provided with 1.38 ± 0.51 L of either deep ocean mineral water (DOM) or a taste-matched placebo (PLA), both mixed with 6% sucrose. DOM increased high-intensity running capacity by ~25% compared to PLA. There were no differences between DOM and PLA for blood lactate concentration, blood glucose concentration, or urine osmolality. The minerals and trace elements within DOM, either individually or synergistically, appear to have augmented high-intensity running capacity in healthy, recreationally active male soccer players after short-term recovery from an initial bout of prolonged, high-intensity running in thermoneutral environmental conditionsPacific Deep Ocean Biotech (PDOB) funded the open access publication charge. However, PDOB provided no further funding and played no role in the study design, collection, analysis, and interpretation of data, writing of the report, or the decision to submit the report for publication. The authors had full access to all of the data and take complete responsibility for the integrity of the data and the accuracy of the data analysis

    The Influence of Caffeine Expectancies on Simulated Soccer Performance in Recreational Individuals

    Get PDF
    Caffeine (CAF) has been reported to improve various facets associated with successful soccer play, including gross motor skill performance, endurance capacity and cognition. These benefits are primarily attributed to pharmacological mechanisms. However, evidence assessing CAF’s overall effects on soccer performance are sparse with no studies accounting for CAF’s potential psychological impact. Therefore, the aim of this study was to assess CAF’s psychological vs. pharmacological influence on various facets of simulated soccer performance. Utilising a double-dissociation design, eight male recreational soccer players (age: 22 ± 5 years, body mass: 78 ± 16 kg, height: 178 ± 6 cm) consumed CAF (3 mg/kg/body mass) or placebo (PLA) capsules, 60 min prior to performing the Loughborough Intermittent Shuttle Test (LIST) interspersed with a collection of ratings of perceived exertion (RPE), blood glucose and lactate, heart rate and performing the Loughborough Soccer Passing Test (LSPT). Whole-body dynamic reaction time (DRT) was assessed pre- and post- LIST, and endurance capacity (TLIM) post, time-matched LIST. Statistical analysis was performed using IBM SPSS (v24) whilst subjective perceptions were explored using template analysis. Mean TLIM was greatest (p < 0.001) for synergism (given CAF/told CAF) (672 ± 132 s) vs. placebo (given PLA/told PLA) (533 ± 79 s). However, when isolated, TLIM was greater (p = 0.012) for CAF psychology (given PLA/told CAF) (623 ± 117 s) vs. pharmacology (given CAF/told PLA) (578 ± 99 s), potentially, via reduced RPE. Although DRT performance was greater (p = 0.024) post-ingestion (+5 hits) and post-exercise (+7 hits) for pharmacology vs. placebo, psychology and synergism appeared to improve LSPT performance vs. pharmacology. Interestingly, positive perceptions during psychology inhibited LSPT and DRT performance via potential CAF over-reliance, with the opposite occurring following negative perceptions. The benefits associated with CAF expectancies may better suit tasks that entail lesser cognitive-/skill-specific attributes but greater gross motor function and this is likely due to reduced RPE. In isolation, these effects appear greater vs. CAF pharmacology. However, an additive benefit may be observed after combining expectancy with CAF pharmacology (i.e., synergism).N/

    Innate Immune Responses of Drosophila Melanogaster are Altered by Spaceflight

    Get PDF
    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms under pinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was down regulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways

    Deep ocean mineral supplementation enhances the cerebral hemodynamic response during exercise and decreases inflammation postexercise in men at two age levels.

    Get PDF
    Background: Previous studies have consistently shown that oral supplementation of deep ocean minerals (DOM) improves vascular function in animals and enhances muscle power output in exercising humans. Purpose: To examine the effects of DOM supplementation on the cerebral hemodynamic response during physical exertion in young and middle-aged men. Design: Double-blind placebo-controlled crossover studies were conducted in young (N = 12, aged 21.2 ± 0.4 years) and middle-aged men (N = 9, aged 46.8 ± 1.4 years). The counter-balanced trials of DOM and Placebo were separated by a 2-week washout period. DOM and Placebo were orally supplemented in drinks before, during, and after cycling exercise. DOM comprises desalinated minerals and trace elements from seawater collected ~618 m below the earth's surface. Methods: Cerebral hemodynamic response (tissue hemoglobin) was measured during cycling at 75% VO2max using near infrared spectroscopy (NIRS). Results: Cycling time to exhaustion at 75% VO2max and the associated plasma lactate response were similar between the Placebo and DOM trials for both age groups. In contrast, DOM significantly elevated cerebral hemoglobin levels in young men and, to a greater extent, in middle-aged men compared with Placebo. An increased neutrophil to lymphocyte ratio (NLR) was observed in middle-aged men, 2 h after exhaustive cycling, but was attenuated by DOM. Conclusion: Our data suggest that minerals and trace elements from deep oceans possess great promise in developing supplements to increase the cerebral hemodynamic response against a physical challenge and during post-exercise recovery for middle-aged men.This work was supported by Pacific Deep Ocean Biotech (Taipei,Taiwan) and University of Taipei (Taipei, Taiwan). The funding sponsors had no role in the design of the study; in the of the manuscript, and in the decision to publish the results. We declare that the results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation

    Thermal sensitivity of feeding and burrowing activity of an invasive crayfish in UK waters

    Get PDF
    Climate change and invasive species are among the biggest threats to global biodiversity and ecosystem function. Although the individual impacts of climate change and invasive species are commonly assessed, we know far less about how a changing climate may impact invading species. Increases in water temperature due to climate change are likely to alter the thermal regime of UK rivers, and this in turn may influence the performance of invasive species such as signal crayfish (Pacifastacus leniusculus), which are known to have deleterious impacts on native ecosystems. We evaluate the relationship between water temperature and two key performance traits in signal crayfish—feeding and burrowing rate—using thermal experiments on wild‐caught individuals in a laboratory environment. Although water temperature was found to have no significant influence on burrowing rate, it did have a strong effect on feeding rate. Using the thermal performance curve for feeding rate, we evaluate how the thermal suitability of three UK rivers for signal crayfish may change as a result of future warming. We find that warming rivers may increase the amount of time that signal crayfish can achieve high feeding rate levels. These results suggest that elevated river water temperatures as a result of climate change may promote higher signal crayfish performance in the future, further exacerbating the ecological impact of this invasive species
    corecore