106 research outputs found

    Ponderomotive effects in multiphoton pair production

    Full text link
    The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass as well as a trajectory-based semi-classical analysis are introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.Comment: 9 pages, 3 Tables, 3 Figure

    microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity

    Get PDF
    Background: The AKT/mammalian target of rapamycin (mTOR) signaling pathway is regulated by 17 α -estradiol (E2) signaling and mediates E2-induced proliferation and progesterone receptor (PgR) expression in breast cancer. Methods and results: Here we use deep sequencing analysis of previously published data from The Cancer Genome Atlas to demonstrate that expression of a key component of mTOR signaling, rapamycin-insensitive companion of mTOR (Rictor), positively correlated with an estrogen receptor- α positive (ER α + ) breast tumor signature. Through increased microRNA-155 (miR-155) expression in the ER α + breast cancer cells we demonstrate repression of Rictor enhanced activation of mTOR complex 1 (mTORC1) signaling with both qPCR and western blot. miR-155-mediated mTOR signaling resulted in deregulated ER α signalingbothinculturedcells in vitro and in xenografts in vivo in addition to repressed PgR expression and act ivity.FurthermoreweobservedthatmiR-155 enhanced mTORC1 signaling (observed through western blot for increased phosphorylation on mTOR S2448) and induced inhibition of mTORC2 signaling (evident through repressed Rictor and tuberous sclerosis 1 (TSC1) gene expression). mTORC1 induced deregulation of E2 signaling was confirmed using qPCR and the mTORC1-specific inhibitor RAD001. Co-treatment of MCF7 breast cancer cells stably overexpressing miR-155 with RAD001 and E2 restored E2-induced PgR gene expression. RAD001 treatment of SCID/CB17 mice inhibited E2-induced tumorigenesis of the MCF7 miR-155 overexpressing cell line. Finally we demonstrated a strong positive correlation between Rictor and PgR expression and a negative correlation with Raptor expression in Luminal B breast cancer samples, a breast cancer histological subtype known for having an altered ER α -signaling pathway. Conclusions: miRNA mediated alterations in mTOR and ER α signaling establishes a new mechanism for altered estrogen responses independent of growth factor stimulation

    Symbiotic Gene Activation is Interrupted by Endocrine Disrupting Chemicals

    Get PDF
    Endocrine disrupting chemicals (EDCs) include organochlorine pesticides, plastics manufacturing by-products, and certain herbicides[1]. These chemicals have been shown to disrupt hormonal signaling in exposed wildlife, lab animals, and mammalian cell culture by binding to estrogen receptors (ER-α and ER-β) and affecting the expression of estrogen responsive genes[2,3]. Additionally, certain plant chemicals, termed phytoestrogens, are also able to bind to estrogen receptors and modulate gene expression, and as such also may be considered EDCs[4]. One example of phytoestrogen action is genistein, a phytochemical produced by soybeans, binding estrogen receptors, and changing expression of estrogen responsive genes which certain studies have linked to a lower incidence of hormonally related cancers in Japanese populations[5]. Why would plants make compounds that are able to act as estrogens in the human body? Obviously, soybeans do not intentionally produce phytoestrogens to prevent breast cancer in Japanese women

    Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer

    Get PDF
    Epithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype

    Elevated expression of long intergenic non-coding RNA HOTAIR in a basal-like variant of MCF-7 breast cancer cells

    Get PDF
    Epigenetic regulation of gene expression is critical to phenotypic maintenance and transition of human breast cancer cells. HOX antisense intergenic RNA (HOTAIR) is a long intergenic non-coding RNA that epigenetically represses gene expression via recruitment of enhancer of zeste homolog 2 (EZH2), a histone methyltransferase. Elevated expression of HOTAIR promotes progression of breast cancer. In the current study we examined the expression and function of HOTAIR in MCF-7-TNR cells, a derivative of the luminal-like breast cancer cell line MCF-7 that acquired resistance to TNF-α-induced cell death. The expression of HOTAIR, markers of the luminal-like and basal-like subtypes, and growth were compared between MCF-7 and MCF-7-TNR cells. These variables were further assessed upon inhibition of HOTAIR, EZH2, p38 MAPK, and SRC kinase in MCF-7-TNR cells. When compared with MCF-7 cells, MCF-7-TNR cells exhibited an increase in the expression of HOTAIR, which correlated with characteristics of a luminal-like to basal-like transition as evidenced by dysregulated gene expression and accelerated growth. MCF-7-TNR cells exhibited reduced suppressive histone H3 lysine27 trimethylation on the HOTAIR promoter. Inhibition of HOTAIR and EZH2 attenuated the luminal-like to basal-like transition in terms of gene expression and growth in MCF-7-TNR cells. Inhibition of p38 and SRC diminished HOTAIR expression and the basal-like phenotype in MCF-7-TNR cells. HOTAIR was robustly expressed in the native basal-like breast cancer cells and inhibition of HOTAIR reduced the basal-like gene expression and growth. Our findings suggest HOTAIR-mediated regulation of gene expression and growth associated with the basal-like phenotype of breast cancer cells

    Obesity Associated Alterations in the Biology of Adipose Stem Cells Mediate Enhanced Tumorigenesis by Estrogen Dependent Pathways

    Get PDF
    Introduction: Obesity has been associated with increased incidence and mortality of breast cancer. While the precise correlation between obesity and breast cancer remains to be determined, recent studies suggest that adipose tissue and adipose stem cells (ASCs) influence breast cancer tumorigenesis and tumor progression. Methods: Breast cancer cells lines were co-cultured with ASCs (n = 24), categorized based on tissue site of origin and body mass index (BMI), and assessed for enhanced proliferation, alterations in gene expression profile with PCR arrays, and enhanced tumorigenesis in immunocompromised mice. The gene expression profile of ASCs was assess with PCR arrays and qRT-PCR and confirmed with Western blot analysis. Inhibitory studies were conducted by delivering estrogen antagonist ICI182,780, leptin neutralizing antibody, or aromatase inhibitor letrozole and assessing breast cancer cell proliferation. To assess the role of leptin in human breast cancers, Oncomine and Kaplan Meier plot analyses were conducted. Results: ASCs derived from the abdominal subcutaneous adipose tissue of obese subjects (BMI \u3e 30) enhanced breast cancer cell proliferation in vitro and tumorigenicity in vivo . These findings were correlated with changes in the gene expression profile of breast cancer cells after co-culturing with ASCs, particularly in estrogen receptor-alpha (ESR1) and progesterone receptor (PGR) expression. Analysis of the gene expression profile of the four groups of ASCs revealed obesity induced alterations in several key genes, including leptin (LEP). Blocking estrogen signaling with ICI182,780, leptin neutralizing antibody, or letrozole diminished the impact of ASCs derived from obese subjects. Women diagnosed with estrogen receptor/progesterone receptor positive (ER+/PR+) breast cancers that also expressed high levels of leptin had poorer prognosis than women with low leptin expression. Conclusion: ASCs isolated from the abdomen of obese subjects demonstrated increased expression of leptin, through estrogen stimulation, which increased breast cancer cell proliferation. The results from this study demonstrate that abdominal obesity induces significant changes in the biological properties of ASCs and that these alterations enhance ER+/PR+ breast cancer tumorigenesis through estrogen dependent pathways

    ZEB2 regulates endocrine therapy sensitivity and metastasis in luminal a breast cancer cells through a non-canonical mechanism

    Get PDF
    PURPOSE: The transcription factors ZEB1 and ZEB2 mediate epithelial-to-mesenchymal transition (EMT) and metastatic progression in numerous malignancies including breast cancer. ZEB1 and ZEB2 drive EMT through transcriptional repression of cell-cell junction proteins and members of the tumor suppressive miR200 family. However, in estrogen receptor positive (ER +) breast cancer, the role of ZEB2 as an independent driver of metastasis has not been fully investigated. METHODS: In the current study, we induced exogenous expression of ZEB2 in ER + MCF-7 and ZR-75-1 breast cancer cell lines and examined EMT gene expression and metastasis using dose-response qRT-PCR, transwell migration assays, proliferation assays with immunofluorescence of Ki-67 staining. We used RNA sequencing to identify pathways and genes affected by ZEB2 overexpression. Finally, we treated ZEB2-overexpressing cells with 17β-estradiol (E2) or ICI 182,780 to evaluate how ZEB2 affects estrogen response. RESULTS: Contrary to expectation, we found that ZEB2 did not increase canonical epithelial nor decrease mesenchymal gene expressions. Furthermore, ZEB2 overexpression did not promote a mesenchymal cell morphology. However, ZEB1 and ZEB2 protein expression induced significant migration of MCF-7 and ZR-75-1 breast cancer cells in vitro and MCF-7 xenograft metastasis in vivo. Transcriptomic (RNA sequencing) pathway analysis revealed alterations in estrogen signaling regulators and pathways, suggesting a role for ZEB2 in endocrine sensitivity in luminal A breast cancer. Expression of ZEB2 was negatively correlated with estrogen receptor complex genes in luminal A patient tumors. Furthermore, treatment with 17β-estradiol (E2) or the estrogen receptor antagonist ICI 182,780 had no effect on growth of ZEB2-overexpressing cells. CONCLUSION: ZEB2 is a multi-functional regulator of drug sensitivity, cell migration, and metastasis in ER + breast cancer and functions through non-canonical mechanisms
    • …
    corecore