2,831 research outputs found

    Antinucleus Production at RHIC

    Full text link
    Light antinuclei may be formed in relativistic heavy ion collisions via final state coalescence of antinucleons. The yields of antinuclei are sensitive to primordial antinucleon production, the volume of the system at kinetic freeze-out, and space-momentum correlations among antinucleons at freeze-out. We report here preliminary STAR results on antideuteron and antihelion production in 130A GeV Au+Au collisions. These results are examined in a coalescence framework to elucidate the space-time structure of the antinucleon source.Comment: 4 pages, 3 figures, talk given at Quark Matter 200

    Nodal Liquid Theory of the Pseudo-Gap Phase of High-Tc Superconductors

    Full text link
    We introduce and study the nodal liquid, a novel zero-temperature quantum phase obtained by quantum-disordering a d-wave superconductor. It has numerous remarkable properties which lead us to suggest it as an explanation of the pseudo-gap state in underdoped high-temperature superconductors. In the absence of impurities, these include power-law magnetic order, a T-linear spin susceptibility, non-trivial thermal conductivity, and two- and one-particle charge gaps, the latter evidenced, e.g. in transport and electron photoemission (which exhibits pronounced fourfold anisotropy inherited from the d-wave quasiparticles). We use a 2+1-dimensional duality transformation to derive an effective field theory for this phase. The theory is comprised of gapless neutral Dirac particles living at the former d-wave nodes, weakly coupled to the fluctuating gauge field of a dual Ginzburg-Landau theory. The nodal liquid interpolates naturally between the d-wave superconductor and the insulating antiferromagnet, and our effective field theory is powerful enough to permit a detailed analysis of a panoply of interesting phenomena, including charge ordering, antiferromagnetism, and d-wave superconductivity. We also discuss the zero-temperature quantum phase transitions which separate the nodal liquid from various ordered phases.Comment: 19 pages, 4 figure

    Defining Unfairness in Unfair Trade Practices

    Get PDF

    Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4<sup>+ </sup>T cell line in the absence of detergents.</p> <p>Results</p> <p>Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4<sup>+ </sup>T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen.</p> <p>Conclusions</p> <p>Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.</p

    The impact of genetic changes during crop domestication

    Get PDF
    Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world

    Securing tropical forest carbon: the contribution of protected areas to REDD

    Get PDF
    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important, although certainly not sufficient, component of an overall strategy for reducing emissions from deforestation and forest degradation (REDD

    Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation

    Get PDF
    Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells

    Synthesis and optical properties of ordered-vacancy perovskite cesium bismuth halide nanocrystals

    Get PDF
    Perovskite-phase cesium bismuth halide (Cs3Bi2X9; X = Cl, Br, I) nanocrystals were synthesized using a hot-injection approach. These nanocrystals adopted ordered-vacancy perovskite crystal structures and demonstrated composition-tunable optical properties. Growth occurred by initial formation of Bi0 seeds, and morphology was controlled by precursor and seed concentration. The Cs3Bi2I9 nanocrystals demonstrated excellent stability under ambient conditions for several months. Contrary to previous reports, we find that photoluminescence originates from the precursor material as opposed to the Cs3Bi2X9 nanocrystals

    The Acute Effects of Ischemic Preconditioning on Short-Duration Cycling: A Randomized Crossover Study

    Get PDF
    International Journal of Exercise Science 16(6): 148-158, 2023. There is recent interest from coaches and athletes regarding IPC as an effective way to generate better competitive outcomes. Regarding cycling specifically, the impact of IPC remains unclear. This study aimed to assess the effectiveness of IPC treatment for improving athletic performance during short-duration cycling. After the exclusion and inclusion criteria, there were 11 volunteers for the 3-minute cycling TT and 13 volunteers for the 6-minute cycling TT. All volunteers were competitive athletes of aerobic sports. The IPC treatment consisted of three alternating cycles of 5 minutes of 100% occlusion followed by 5 minutes of reperfusion to each leg. The sham treatment consisted of three alternating cycles of 1 minute of 100% occlusion followed by 1 minute of reperfusion to each leg. The main finding was that IPC significantly improved (p\u3c0.05) power output during 3-minute (4.22%) and 6-minute (2.29%) cycling TT relative to a sham. Additionally, about one-third of our participants required a tourniquet pressure higher than 220 mmHg to achieve 100% occlusion. These findings indicate ischemic preconditioning, administered bilaterally as three rounds of 5 minutes of total occlusion and ensuing reperfusion 20 minutes before a cycling TT, significantly enhanced average power output
    corecore