11 research outputs found
Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners
Many subsurface microorganisms couple their metabolism to the reduction or oxidation of extracellular substrates. For example, anaerobic mineral-respiring bacteria can use external metal oxides as terminal electron acceptors during respiration. Porin–cytochrome complexes facilitate the movement of electrons generated through intracellular catabolic processes across the bacterial outer membrane to these terminal electron acceptors. In the mineral-reducing model bacterium Shewanella oneidensis MR-1, this complex is composed of two decaheme cytochromes (MtrA and MtrC) and an outer-membrane β-barrel (MtrB). However, the structures and mechanisms by which porin–cytochrome complexes transfer electrons are unknown. Here, we used small-angle neutron scattering (SANS) to study the molecular structure of the transmembrane complexes MtrAB and MtrCAB. Ab initio modeling of the scattering data yielded a molecular envelope with dimensions of ∼105 × 60 × 35 Å for MtrAB and ∼170 × 60 × 45 Å for MtrCAB. The shapes of these molecular envelopes suggested that MtrC interacts with the surface of MtrAB, extending ∼70 Å from the membrane surface and allowing the terminal hemes to interact with both MtrAB and an extracellular acceptor. The data also reveal that MtrA fully extends through the length of MtrB, with ∼30 Å being exposed into the periplasm. Proteoliposome models containing membrane-associated MtrCAB and internalized small tetraheme cytochrome (STC) indicate that MtrCAB could reduce Fe(III) citrate with STC as an electron donor, disclosing a direct interaction between MtrCAB and STC. Taken together, both structural and proteoliposome experiments support porin–cytochrome–mediated electron transfer via periplasmic cytochromes such as STC
Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2){1-x}(CuCrO2){x}
We have prepared the complete delafossite solid solution series between
diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The
evolution with composition x in CuAl(1-x)Cr(x)O2 of the crystal structure and
magnetic properties has been studied and is reported here. The room-temperature
unit cell parameters follow the Vegard law and increase with x as expected. The
effective moment is equal to the Cr^3+ spin-only S = 3/2 value throughout the
entire solid solution. Theta is negative, indicating that the dominant
interactions are antiferromagnetic, and its magnitude increases with Cr
substitution. For dilute Cr compositions, J_BB was estimated by mean-field
theory to be 2.0 meV. Despite the sizable Theta, long-range antiferromagnetic
order does not develop until very large x, and is preceeded by glassy behavior.
Data presented here, and that on dilute Al-substitution from Okuda et al.,
suggest that the reduction in magnetic frustration due to the presence of
non-magnetic Al does not have as dominant an effect on magnetism as chemical
disorder and dilution of the magnetic exchange. For all samples, the 5 K
isothermal magnetization does not saturate in fields up to 5 T and minimal
hysteresis is observed. The presence of antiferromagnetic interactions is
clearly evident in the sub-Brillouin behavior with a reduced magnetization per
Cr atom. An inspection of the scaled Curie plot reveals that significant
short-range antiferromagnetic interactions occur in CuCrO2 above its Neel
temperature, consistent with its magnetic frustration. Uncompensated
short-range interactions are present in the Al-substituted samples and are
likely a result of chemical disorder
A banned variety was the mother of several major wine grapes
A number of widely grown varieties of Vitis vinifera ssp. sativa, the grape used for wine production, are known to have resulted from crosses between Pinot noir and Gouais blanc, although it is not known which was the maternal parent in these crosses. We have analysed microsatellites and a single nucleotide polymorphism (SNP) in chloroplast DNA from these two varieties and twelve progeny strains, including Chardonnay, Gamay noir and Aligoté. The results demonstrate that Gouais blanc was the maternal parent for nine of these strains, including Chardonnay, Gamay noir and Aligoté. This is a striking conclusion, as Gouais is generally considered a highly inferior variety, and its cultivation was banned for many years in parts of Europe