77 research outputs found

    Semantic Memory Functional MRI and Cognitive Function After Exercise Intervention in Mild Cognitive Impairment

    Get PDF
    Mild cognitive impairment (MCI) is associated with early memory loss, Alzheimer\u27s disease (AD) neuropathology, inefficient or ineffective neural processing, and increased risk for AD. Unfortunately, treatments aimed at improving clinical symptoms or markers of brain function generally have been of limited value. Physical exercise is often recommended for people diagnosed with MCI, primarily because of its widely reported cognitive benefits in healthy older adults. However, it is unknown if exercise actually benefits brain function during memory retrieval in MCI. Here, we examined the effects of exercise training on semantic memory activation during functional magnetic resonance imaging (fMRI). Seventeen MCI participants and 18 cognitively intact controls, similar in sex, age, education, genetic risk, and medication use, volunteered for a 12-week exercise intervention consisting of supervised treadmill walking at a moderate intensity. Both MCI and control participants significantly increased their cardiorespiratory fitness by approximately 10% on a treadmill exercise test. Before and after the exercise intervention, participants completed an fMRI famous name discrimination task and a neuropsychological battery, Performance on Trial 1 of a list-learning task significantly improved in the MCI participants. Eleven brain regions activated during the semantic memory task showed a significant decrease in activation intensity following the intervention that was similar between groups (p-values ranged 0.048 to 0.0001). These findings suggest exercise may improve neural efficiency during semantic memory retrieval in MCI and cognitively intact older adults, and may lead to improvement in cognitive function. Clinical trials are needed to determine if exercise is effective to delay conversion to AD

    Dendrites differ from axons in patterns of microtubule stability and polymerization during development

    Get PDF
    BACKGROUND: Dendrites differ from axons in patterns of growth and development, as well as in morphology. Given that microtubules are key structural elements in cells, we assessed patterns of microtubule stability and polymerization during hippocampal neuron development in vitro to determine if these aspects of microtubule organization could distinguish axons from dendrites. RESULTS: Quantitative ratiometric immunocytochemistry identified significant differences in microtubule stability between axons and dendrites. Most notably, regardless of developmental stage, there were high levels of dynamic microtubules throughout the dendritic arbor, whereas dynamic microtubules were predominantly concentrated in the distal end of axons. Analysis of microtubule polymerization using green fluorescent protein-tagged EB1 showed both developmental and regional differences in microtubule polymerization between axons and dendrites. Early in development (for example, 1 to 2 days in vitro), polymerization events were distributed equally in both the anterograde and retrograde directions throughout the length of both axons and dendrites. As development progressed, however, polymerization became biased, with a greater number of polymerization events in distal than in proximal and middle regions. While polymerization occurred almost exclusively in the anterograde direction for axons, both anterograde and retrograde polymerization was observed in dendrites. This is in agreement with predicted differences in microtubule polarity within these compartments, although fewer retrograde events were observed in dendrites than expected. CONCLUSION: Both immunocytochemical and live imaging analyses showed that newly formed microtubules predominated at the distal end of axons and dendrites, suggesting a common mechanism that incorporates increased microtubule polymerization at growing process tips. Dendrites had more immature, dynamic microtubules throughout the entire arbor than did axons, however. Identifying these differences in microtubule stability and polymerization is a necessary first step toward understanding how they are developmentally regulated, and may reveal novel mechanisms underlying neuron maturation and dendritic plasticity that extend beyond the initial specification of polarity

    Does Physical Activity Influence Semantic Memory Activation in Amnestic Mild Cognitive Impairment?

    Get PDF
    The effect of physical activity (PA) on functional brain activation for semantic memory in amnestic mild cognitive impairment (aMCI) was examined using event-related functional magnetic resonance imaging during fame discrimination. Significantly greater semantic memory activation occurred in the left caudate of High- versus Low-PA patients, (P=0.03), suggesting PA may enhance memory-related caudate activation in aMCI

    Obesity, but not hypohydration, mediates changes in mental task load during passive heating in females

    Get PDF
    Background The independent effects of hypohydration and hyperthermia on cognition and mood is unclear since the two stresses often confound each other. Further, it is unknown if obese individuals have the same impairments during hyperthermia and hypohydration that is often observed in non-obese individuals. Methods The current study was designed to assess the independent and combined effects of mild hypohydration and hyperthermia on cognition, mood, and mental task load in obese and non-obese females. Twenty-one healthy females participated in two passive heating trials, wherein they were either euhydrated or hypohydrated prior to and throughout passive heating. Cognition (ImPACT), mental task load (NASA-TLX), and mood (Brunel Mood Scale; BRUMS) were measured before and after a 1.0 °C increase in core temperature (TC). Results After a 1.0 °C TC elevation, hypohydration resulted in greater (p  0.05). Hyperthermia, regardless of hydration status, impaired (∼5 A.U) measures of memory-based cognition (verbal and visual memory), and increased mental task load, while worsening mood (p  0.05). Conclusion These data indicate that hyperthermia independently impairs memory-based aspects of cognitive performance, mental task load, and leads to a negative mood state. Mild hypohydration did not exacerbate the effects of hyperthermia. However, obese individuals had increased mental task load during hyperthermia

    Accelerated acquisition in pure-shift spectra based on prior knowledge from 1H NMR

    Get PDF
    Pure-shift NMR enhances the spectral resolution, but the optimal resolutions can only be obtained at the cost of the acquisition time. We propose to accelerate the acquisition using optimised ’burst’ non-uniform sampling schemes[I. E. Ndukwe, A. Shchukina, K. Kazimierczuk, C. P. Butts,ChemComm, 2016, 52, 12769] and then reconstructing the undersampled signal mathematically. Here, we focus on the reliability of this reconstruction depending on the sampling scheme and present a workflow for the sampling optimization. It is ready to be implemented in routine measurements and yields a great improvement of the reconstruction in challenging cases

    Improved NOE fitting for flexible molecules based on molecular mechanics data – a case study with S-adenosylmethionine

    Get PDF
    The use of molecular dynamics (MD) calculations to derive relative populations of conformers is highly sensitive to both timescale and parameterisation of the MD. Where these calculations are coupled with NOE data to determine the dynamics of a molecular system, this can present issues if these populations are thus relied upon. We present an approach that refines the highly accurate PANIC NMR methodology combined with clustering approaches to generate conformers, but without restraining the simulations or considering the relative population distributions generated by MD. Combining this structural sampling with NOE fitting, we demonstrate, for S-adenosylmethionine (aqueous solution at pH 7.0), significant improvements are made to the fit of populations to the experimental data, revealing a strong overall preference for the syn conformation of the adenosyl group relative to the ribose ring, but with less discrimination for the conformation of the ribose ring itself

    Race Yourselves: A Longitudinal Exploration of Self-Competition Between Past, Present, and Future Performances in a VR Exergame

    Get PDF
    Participating in competitive races can be a thrilling experience for athletes, involving a rush of excitement and sensations of flow, achievement, and self-fulfilment. However, for non-athletes, the prospect of competition is often a scary one which affects intrinsic motivation negatively, especially for less fit, less competitive individuals. We propose a novel method making the positive racing experience accessible to non-athletes using a high-intensity cycling VR exergame: by recording and replaying all their previous gameplay sessions simultaneously, including a projected future performance, players can race against a crowd of "ghost" avatars representing their individual fitness journey. The experience stays relevant and exciting as every race adds a new competitor. A longitudinal study over four weeks and a cross-sectional study found that the new method improves physical performance, intrinsic motivation, and flow compared to a non-competitive exergame. Additionally, the longitudinal study provides insights into the longer-term effects of VR exergames

    Vignette 23: Indigenous Management Systems Can Promote More Sustainable Salmon Fisheries in the Salish Sea

    Get PDF
    Indigenous peoples of the Northern Pacific Rim have harvested salmon for more than 10,000 years, and Pacific salmon (Oncorhynchus spp.) form the foundation of social-ecological systems encompassing communities from California to Kamchatka and Northern Japan. Through continuous placed-based interdependence with salmon, Indigenous societies formed deliberate and well-honed systems of salmon management. These systems promoted the sustained productivity of salmon fisheries. In Canada and the United States, Indigenous sovereignty and resource stewardship were forcibly disrupted by colonial government authority. Despite the destructive impacts of colonization, Indigenous culture and knowledge are resurgent in Canada and the United States. Indigenous fishing technologies and management systems are being documented and reinvigorated. Systems of Indigenous salmon management can support long- term opportunities for equitable and sustainable harvest of salmon across western North America
    • …
    corecore