125 research outputs found

    Impact of Size and Delay on Neural Activity in the Rat Limbic Corticostriatal System

    Get PDF
    A number of factors influence an animal’s economic decisions. Two most commonly studied are the magnitude of and delay to reward. To investigate how these factors are represented in the firing rates of single neurons, we devised a behavioral task that independently manipulated the expected delay to and size of reward. Rats perceived the differently delayed and sized rewards as having different values and were more motivated under short delay and big-reward conditions than under long delay and small reward conditions as measured by percent choice, accuracy, and reaction time. Since the creation of this task, we have recorded from several different brain areas including, orbitofrontal cortex, striatum, amygdala, substantia nigra pars reticulata, and midbrain dopamine neurons. Here, we review and compare those data with a substantial focus on those areas that have been shown to be critical for performance on classic time discounting procedures and provide a potential mechanism by which they might interact when animals are deciding between differently delayed rewards. We found that most brain areas in the cortico-limbic circuit encode both the magnitude and delay to reward delivery in one form or another, but only a few encode them together at the single neuron level

    Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy including senscence, necrosis, and autophagy, but not apoptosis

    Get PDF
    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

    One Year of COVID-19 Vaccine Misinformation on Twitter: Longitudinal Study

    Get PDF
    Background: Vaccinations play a critical role in mitigating the impact of COVID-19 and other diseases. Past research has linked misinformation to increased hesitancy and lower vaccination rates. Gaps remain in our knowledge about the main drivers of vaccine misinformation on social media and effective ways to intervene. Objective: Our longitudinal study had two primary objectives: (1) to investigate the patterns of prevalence and contagion of COVID-19 vaccine misinformation on Twitter in 2021, and (2) to identify the main spreaders of vaccine misinformation. Given our initial results, we further considered the likely drivers of misinformation and its spread, providing insights for potential interventions. Methods: We collected almost 300 million English-language tweets related to COVID-19 vaccines using a list of over 80 relevant keywords over a period of 12 months. We then extracted and labeled news articles at the source level based on third-party lists of low-credibility and mainstream news sources, and measured the prevalence of different kinds of information. We also considered suspicious YouTube videos shared on Twitter. We focused our analysis of vaccine misinformation spreaders on verified and automated Twitter accounts. Results: Our findings showed a relatively low prevalence of low-credibility information compared to the entirety of mainstream news. However, the most popular low-credibility sources had reshare volumes comparable to those of many mainstream sources, and had larger volumes than those of authoritative sources such as the US Centers for Disease Control and Prevention and the World Health Organization. Throughout the year, we observed an increasing trend in the prevalence of low-credibility news about vaccines. We also observed a considerable amount of suspicious YouTube videos shared on Twitter. Tweets by a small group of approximately 800 "superspreaders" verified by Twitter accounted for approximately 35% of all reshares of misinformation on an average day, with the top superspreader (@RobertKennedyJr) responsible for over 13% of retweets. Finally, low-credibility news and suspicious YouTube videos were more likely to be shared by automated accounts. Conclusions: The wide spread of misinformation around COVID-19 vaccines on Twitter during 2021 shows that there was an audience for this type of content. Our findings are also consistent with the hypothesis that superspreaders are driven by financial incentives that allow them to profit from health misinformation. Despite high-profile cases of deplatformed misinformation superspreaders, our results show that in 2021, a few individuals still played an outsized role in the spread of low-credibility vaccine content. As a result, social media moderation efforts would be better served by focusing on reducing the online visibility of repeat spreaders of harmful content, especially during public health crises

    Inducing a pH-dependent conformational response by competitive binding to Zn2+ of a series of chiral ligands of disparate basicity

    Get PDF
    Molecules that change shape in response to environmental conditions are central to biological molecular communication devices and their synthetic chemical analogues. Here we report a molecular system in which a series of chiral anionic ligands of differing basicity are selectively protonated according to the pH of the medium. A cationic circular dichroism (CD) reporter complex responds to anion binding by selecting one of two alternative enantiomeric conformations. Exploiting the principle that less basic anions have, in general, weaker electrostatic interactions than more basic anions, a set of three chiral acids with large (>5 unit) pK(a) differences and differing configurations were sequentially deprotonated in acetonitrile by addition of base, allowing the most basic anion in the mixture at any time to bind to the reporter complex. A characteristic CD output resulted, which changed in sign as the next-most basic anion was revealed by the next deprotonation in the series. Four cycles of switching between three ligand-bound states were achieved with minimal changes in signal magnitude, by alternating addition of base and acid. The pH-dependent conformational response was used to transduce a signal by appending to the binding site a 2-aminoisobutyric acid (Aib) oligomer, whose M or P helical conformation depended on the chirality of the bound ligand, and was reported by a remote (13)C-labelled NMR reporter group. The multicomponent system thus converts a pH signal into a programmable conformational response which induces a remote spectroscopic effect

    NASA ExoPAG Study Analysis Group 11: Preparing for the WFIRST Microlensing Survey

    Full text link
    NASA's proposed WFIRST-AFTA mission will discover thousands of exoplanets with separations from the habitable zone out to unbound planets, using the technique of gravitational microlensing. The Study Analysis Group 11 of the NASA Exoplanet Program Analysis Group was convened to explore scientific programs that can be undertaken now, and in the years leading up to WFIRST's launch, in order to maximize the mission's scientific return and to reduce technical and scientific risk. This report presents those findings, which include suggested precursor Hubble Space Telescope observations, a ground-based, NIR microlensing survey, and other programs to develop and deepen community scientific expertise prior to the mission.Comment: 35 pages, 5 Figures. A brief overview of the findings is presented in the Executive Summary (2 pages

    The growth and hydrodynamic collapse of a protoplanet envelope

    Full text link
    We have conducted three-dimensional self-gravitating radiation hydrodynamical models of gas accretion onto high mass cores (15-33 Earth masses) over hundreds of orbits. Of these models, one case accretes more than a third of a Jupiter mass of gas, before eventually undergoing a hydrodynamic collapse. This collapse causes the density near the core to increase by more than an order of magnitude, and the outer envelope to evolve into a circumplanetary disc. A small reduction in the mass within the Hill radius (R_H) accompanies this collapse as a shock propagates outwards. This collapse leads to a new hydrostatic equilibrium for the protoplanetary envelope, at which point 97 per cent of the mass contained within the Hill radius is within the inner 0.03 R_H which had previously contained less than 40 per cent. Following this collapse the protoplanet resumes accretion at its prior rate. The net flow of mass towards this dense protoplanet is predominantly from high latitudes, whilst at the outer edge of the circumplanetary disc there is net outflow of gas along the midplane. We also find a turnover of gas deep within the bound envelope that may be caused by the establishment of convection cells.Comment: 16 pages, 16 figures. Accepted for publication in MNRA

    Skin Gambling Predicts Problematic Gambling Amongst Adolescents When Controlling for Monetary Gambling

    Get PDF
    Background and aims: Skin gambling uses in-game items (skins) acquired in video games, to gamble on esports, games of chance, other competitive events and privately with friends. This study examined characteristics of adolescent skin gamblers, their engagement in monetary gambling, and relationships between skin gambling and at risk/problem gambling. Methods: Two samples of Australian adolescents aged 12–17 years were recruited to an online survey through advertisements (n = 843) and an online panel provider (n = 826). Results: In both samples, past-month skin gamblers (n = 466 advertisements sample; n = 185 online panel sample) were more likely to have lower wellbeing, score as having an internet gaming disorder on the IGD, engage in more types of monetary gambling, and meet criteria for problem gambling on the DSM-IV-MR-J. Past-month skin gambling uniquely predicted problem gambling when controlling for past-month gambling on 11 monetary forms and the total number of monetary gambling forms. Discussion and conclusions: Underage participation in skin gambling is a growing concern. The strong convergence between engagement in skin gambling and monetary gambling suggests common risk factors may increase the propensity of some adolescents to gamble on these multiple forms. Nonetheless, past-month skin gambling predicted problem gambling even when controlling for past-month monetary gambling, indicating its unique contribution to gambling problems and harm. While the study was based on non-probability samples, its results strengthen the case for regulatory reforms, age restrictions and public health education to prevent underage skin gambling and its potentially harmful consequences for children and young people

    KMT-2016-BLG-2052L: Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Time-scale Event

    Full text link
    We present the analysis of a binary microlensing event KMT-2016-BLG-2052, for which the lensing-induced brightening of the source star lasted for 2 seasons. We determine the lens mass from the combined measurements of the microlens parallax \pie and angular Einstein radius \thetae. The measured mass indicates that the lens is a binary composed of M dwarfs with masses of M10.34 MM_1\sim 0.34~M_\odot and M20.17 MM_2\sim 0.17~M_\odot. The measured relative lens-source proper motion of μ3.9 mas yr1\mu\sim 3.9~{\rm mas}~{\rm yr}^{-1} is smaller than 5 mas yr1\sim 5~{\rm mas}~{\rm yr}^{-1} of typical Galactic lensing events, while the estimated angular Einstein radius of \thetae\sim 1.2~{\rm mas} is substantially greater than the typical value of 0.5 mas\sim 0.5~{\rm mas}. Therefore, it turns out that the long time scale of the event is caused by the combination of the slow μ\mu and large \thetae rather than the heavy mass of the lens. From the simulation of Galactic lensing events with very long time scales (tE100t_{\rm E}\gtrsim 100 days), we find that the probabilities that long time-scale events are produced by lenses with masses 1.0 M\geq 1.0~M_\odot and 3.0 M\geq 3.0~M_\odot are 19%\sim 19\% and 2.6\%, respectively, indicating that events produced by heavy lenses comprise a minor fraction of long time-scale events. The results indicate that it is essential to determine lens masses by measuring both \pie and \thetae in order to firmly identify heavy stellar remnants such as neutron stars and black holes.Comment: 9 pages, 11 figure

    Retired A Stars and Their Companions VI. A Pair of Interacting Exoplanet Pairs Around the Subgiants 24 Sextanis and HD200964

    Get PDF
    We report radial velocity measurements of the G-type subgiants 24 Sextanis (=HD90043) and HD200964. Both are massive, evolved stars that exhibit periodic variations due to the presence of a pair of Jovian planets. Photometric monitoring with the T12 0.80m APT at Fairborn Observatory demonstrates both stars to be constant in brightness to <= 0.002 mag, thus strengthening the planetary interpretation of the radial velocity variations. 24 Sex b,c have orbital periods of 453.8 days and 883~days, corresponding to semimajor axes 1.333 AU and 2.08 AU, and minimum masses (Msini) 1.99 Mjup and 0.86 Mjup, assuming a stellar mass 1.54 Msun. HD200964 b,c have orbital periods of 613.8 days and 825 days, corresponding to semimajor axes 1.601 AU and 1.95 AU, and minimum masses 1.85 Mjup and 0.90 Mjup, assuming M* = 1.44 Msun. We also carry out dynamical simulations to properly account for gravitational interactions between the planets. Most, if not all, of the dynamically stable solutions include crossing orbits, suggesting that each system is locked in a mean motion resonance that prevents close encounters and provides long-term stability. The planets in the 24 Sex system likely have a period ratio near 2:1, while the HD200964 system is even more tightly packed with a period ratio close to 4:3. However, we caution that further radial velocity observations and more detailed dynamical modelling will be required to provide definitive and unique orbital solutions for both cases, and to determine whether the two systems are truly resonant.Comment: AJ accepte
    corecore