1,123 research outputs found

    Multiple-University Extension Program Addresses Postdisaster Oil Spill Needs Through Private Funding Partnership

    Get PDF
    In response to the Deepwater Horizon Oil Spill, the Gulf of Mexico Research Initiative (GoMRI) was formed to answer oil spill–related scientific questions. However, peer-reviewed scientific discoveries were not reaching people whose livelihoods depended on a healthy Gulf of Mexico. GoMRI and the four Gulf of Mexico Sea Grant programs partnered to develop a regional Extension program with a team of multidisciplinary specialists and a regional manager embedded within the Sea Grant programs. The team answered oil spill science questions from target audiences. The program leaders also identified the value of adding a regional Extension communicator to enhance their Extension products

    Constraining the X-ray - Infrared spectral index of second-timescale flares from SGR1935+2154 with Palomar Gattini-IR

    Get PDF
    The Galactic magnetar SGR1935+2154 has been reported to produce the first known example of a bright millisecond duration radio burst (FRB 200428) similar to the cosmological population of fast radio bursts (FRBs), bolstering the association of FRBs to active magnetars. The detection of a coincident bright X-ray burst has revealed the first observed multi-wavelength counterpart of a FRB. However, the search for similar emission at optical wavelengths has been hampered by the high inferred extinction on the line of sight. Here, we present results from the first search for second-timescale emission from the source at near-infrared wavelengths using the Palomar Gattini-IR observing system in J-band, made possible by a recently implemented detector read-out mode that allowed for short exposure times of 0.84 s with 99.9% observing efficiency. With a total observing time of 12 hours (47728 images) on source, we place median 3σ3\,\sigma limits on the second-timescale emission of <20< 20 mJy (13.1 AB mag). We present non-detection limits from epochs of four simultaneous X-ray bursts detected by the Insight-{\it HXMT} and {\it NuSTAR} telescopes during our observing campaign. The limits translate to an extinction corrected fluence limit of <125< 125 Jy ms for an estimated extinction of AJ=2.0A_J = 2.0 mag. These limits provide the most stringent constraints to date on the fluence of flares at frequencies of 1014\sim 10^{14} Hz, and constrain the ratio of the near-infrared (NIR) fluence to that of coincident X-ray bursts to RNIR<2.5×102R_{\rm NIR} < 2.5 \times 10^{-2}. Our observations were sensitive enough to easily detect a near-infrared counterpart of FRB 200428 if the NIR emission falls on the same power law as that observed across its radio to X-ray spectrum. The non-detection of NIR emission around the coincident X-ray bursts constrains the fluence index of the brightest burst to be steeper than 0.350.35.Comment: 10 pages, 4 figures, submitted to ApJL. Comments welcom

    Community-powered urban stream restoration: A vision for sustainable and resilient urban ecosystems

    Get PDF
    Urban streams can provide amenities to people living in cities, but those benefits are reduced when streams become degraded, potentially even causing harm (disease, toxic compounds, etc.). Governments and institutions invest resources to improve the values and services provided by urban streams; however, the conception, development, and implementation of such projects may not include meaningful involvement of community members and other stakeholders. Consequently, project objectives may be misaligned with community desires and needs, and projects may fail to achieve their goals. In February 2020, the 5(th) Symposium on Urbanization and Stream Ecology, an interdisciplinary meeting held every 3 to 5 y, met in Austin, Texas, USA, to explore new approaches to urban stream projects, including ways to maximize the full range of potential benefits by better integrating community members into project identification and decision making. The symposium included in-depth discussion about 4 nearby field case studies, participation of multidisciplinary urban stream experts from 5 continents, and input from the Austin community. Institutional barriers to community inclusion were identified and analyzed using real-world examples, both from the case studies and from the literature, which clarified disparities in power, equity, and values. Outcomes of the symposium have been aggregated into a vision that challenges the present institutional approach to urban stream management and a set of strategies to systematically address these barriers to improve restoration solutions. Integrating community members and other stakeholders throughout the urban restoration process, and a transparent decision-making process to resolve divergent objectives, can help identify appropriate goals for realizing both the ecological and social benefits of stream restoration

    Palomar Gattini-IR: Survey overview, data processing system, on-sky performance and first results

    Get PDF
    Palomar Gattini-IR is a new wide-field, near-infrared (NIR) robotic time domain survey operating at Palomar Observatory. Using a 30 cm telescope mounted with a H2RG detector, Gattini-IR achieves a field of view (FOV) of 25 sq. deg. with a pixel scale of 8.”7 in J-band. Here, we describe the system design, survey operations, data processing system and on-sky performance of Palomar Gattini-IR. As a part of the nominal survey, Gattini-IR scans ≈7500 square degrees of the sky every night to a median 5σ depth of 15.7 AB mag outside the Galactic plane. The survey covers ≈15,000 square degrees of the sky visible from Palomar with a median cadence of 2 days. A real-time data processing system produces stacked science images from dithered raw images taken on sky, together with point-spread function (PSF)-fit source catalogs and transient candidates identified from subtractions within a median delay of ≈4 hr from the time of observation. The calibrated data products achieve an astrometric accuracy (rms) of ≈0.”7 with respect to Gaia DR2 for sources with signal-to-noise ratio > 10, and better than ≈0.”35 for sources brighter than ≈12 Vega mag. The photometric accuracy (rms) achieved in the PSF-fit source catalogs is better than ≈3% for sources brighter than ≈12 Vega mag and fainter than the saturation magnitude of ≈8.5 Vega mag, as calibrated against the Two Micron All Sky Survey catalog. The detection efficiency of transient candidates injected into the images is better than 90% for sources brighter than the 5σ limiting magnitude. The photometric recovery precision of injected sources is 3% for sources brighter than 13 mag, and the astrometric recovery rms is ≈0.”9. Reference images generated by stacking several field visits achieve depths of ≳16.5 AB mag over 60% of the sky, while it is limited by confusion in the Galactic plane. With a FOV ≈40× larger than any other existing NIR imaging instrument, Gattini-IR is probing the reddest and dustiest transients in the local universe such as dust obscured supernovae in nearby galaxies, novae behind large columns of extinction within the galaxy, reddened microlensing events in the Galactic plane and variability from cool and dust obscured stars. We present results from transients and variables identified since the start of the commissioning period

    Five biopsy specimens from the proximal part of the tumor reliably determine HER2 protein expression status in gastric cancer

    Get PDF
    Background: National guidelines recommend trastuzumab for treatment of patients with metastatic HER2-positive gastric cancer (GC). There is currently no guideline indicating the number of biopsy specimens and the location from which they should be obtained to reliably determine the human epidermal growth factor receptor 2 (HER2) status in GC. The aim of this pilot study was (a) to quantify HER2-positive tumor cells in different tumor regions to assess the spatial heterogeneity of HER2 expression and (b) to establish the required number of biopsy specimens and the location from which they should be obtained within the tumor to achieve concordance between HER2 expression status in the biopsy specimens and the resection specimen. Methods: HER2 expression was quantified in six different regions of 24 HER2-positive GC and in six virtual biopsy specimens from different luminal regions. Intratumoral regional heterogeneity and concordance between HER2 status in the biopsy specimens and the resection specimen were analyzed. Results: HER2-positive cells were more frequent in the luminal tumor surface compared with deeper layers (p < 0.001). GCs with differentiated histological features were more commonly HER2 positive (p < 0.001). Assessment of HER2 expression status in five biopsy specimens was sufficient to achieve 100 % concordance between the biopsy specimens and the resection specimen. Conclusions: This is the first study to suggest preferential HER2 positivity at the luminal surface in GC and to establish a minimum number of biopsy specimens needed to obtain a biopsy HER2 result which is identical to that from the whole tumor. Our study suggests that HER2 testing in five tumor-containing endoscopic biopsy specimens from the proximal (oral) part of the tumor is advisable. The results from this pilot study require validation in a prospective study

    The Concept of Transparency in International Relations: towards a critical approach

    Get PDF
    Transparency is an important concept in International Relations. The possibility of realizing transparency in practice operates as a central analytical axis defining distinct positions on core theoretical problems within the field, from the security dilemma to the function of international institutions and beyond. As a political practice the pursuit of transparent governance is a dominant feature of global politics, promoted by a wide range of actors across a vast range of issue areas, from nuclear proliferation to Internet governance to the politics of foreign aid. Yet, despite its importance, precisely what transparency means or how the concept is understood is frequently ill-defined by academics and policy-makers alike. As a result, the epistemological and ontological underpinnings of approaches to transparency in IR often sit in tension with their wider theoretical commitments. This article will examine the three primary understandings of transparency used in IR in order to unpack these commitments. It finds that while transparency is often explicitly conceptualized as a property of information, particularly within rationalist scholarship, this understanding rests upon an unarticulated set of sociological assumptions. This analysis suggests that conceptualizing ‘transparency-as-information’ without a wider sociology of knowledge production is highly problematic, potentially obscuring our ability to recognize transparent practices in global governance. Understanding transparency as dialogue, as a social practice rooted in shared cognitive capacities and epistemic frameworks, provides a firmer analytical ground from which to examine transparency in International Relations

    ZTF 18aaqeasu (SN 2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar Mass White Dwarf

    Get PDF
    The detonation of a helium shell on a white dwarf has been proposed as a possible explosion triggering mechanism for Type Ia supernovae. Here, we report ZTF 18aaqeasu (SN 2018byg/ATLAS 18pqq), a peculiar Type I supernova, consistent with being a helium-shell double-detonation. With a rise time of 18\approx 18 days from explosion, the transient reached a peak absolute magnitude of MR18.2M_R \approx -18.2 mag, exhibiting a light curve akin to sub-luminous SN 1991bg-like Type Ia supernovae, albeit with an unusually steep increase in brightness within a week from explosion. Spectra taken near peak light exhibit prominent Si absorption features together with an unusually red color (gr2g-r \approx 2 mag) arising from nearly complete line blanketing of flux blue-wards of 5000 \AA. This behavior is unlike any previously observed thermonuclear transient. Nebular phase spectra taken at and after 30\approx 30 days from peak light reveal evidence of a thermonuclear detonation event dominated by Fe-group nucleosynthesis. We show that the peculiar properties of ZTF 18aaqeasu are consistent with the detonation of a massive (0.15\approx 0.15 M_\odot) helium shell on a sub-Chandrasekhar mass (0.75\approx 0.75 M_\odot) white dwarf after including mixing of 0.2\approx 0.2 M_\odot of material in the outer ejecta. These observations provide evidence of a likely rare class of thermonuclear supernovae arising from detonations of massive helium shells.Comment: 10 pages, 6 figures. Submitted to ApJ
    corecore